

ESA Cloud_cci Product User Guide (PUG)

(Applicable to Cloud_cci version 3.0 products)

Issue 5 Revision 1

16 January 2020

Deliverable No.:

ESRIN/Contract No.: 4000109870/13/I-NB

D-3.3

Project Coordinator:

Technical Officer:

Dr. Simon Pinnock European Space Agency Simon.Pinnock@esa.int

Dr. Rainer Hollmann Deutscher Wetterdienst rainer.hollmann@dwd.de

DOIs of Cloud_cci datasets:

DOI: <u>10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003</u> DOI: <u>10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V003</u> DOI: <u>10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V003</u>

Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
Date:				16 January 2020
lssue:	5	Revision:	1	Page 2

Document Change Record

Document, Version	Date	Changes	Originator
PUGv5.0	21/10/2019	Major document update now providing information about version 3 Cloud_cci datasets: AVHRR-AMv3, AVHRR-PMv3 and ATSR2-AATSRv3	M. Stengel
PUGv5.1 submitted	05/12/2019	Revision after ESA review	M. Stengel
PUGv5.1	16/01/2020	Approved and issued version	M. Stengel

Purpose

The purpose of this document is to provide user guidance for Cloud_cci version cloud and radiation property datasets, their scientific and technical characteristics and the corresponding data access.

Table of Contents

1.	Intro	oduction6
	1.1	The ESA Cloud_cci project6
	1.2	The Cloud_cci version 3 datasets7
	1.3	Cloud_cci cloud products9
2.	Proc	duct description and guidance12
	2.1	Cloud mask & fraction
	2.2	Cloud phase & liquid cloud fraction14
	2.3	Cloud optical thickness
	2.4	Cloud effective radius
	2.5	Cloud top pressure/height/temperature
	2.6	Cloud liquid water path23
	2.7	Cloud ice water path
	2.8	Spectral cloud albedo
	2.9	Joint cloud property histogram29
	2.10	Top of atmosphere broadband radiative flux
	2.11	Bottom of atmosphere broadband radiative flux
3.	Data	a format description
	3.1	File names and vocabulary
	3.2	Data format
4.	Data	a access, citation, acknowledgement, user support41
	4.1	Data access
	4.2	User support
	4.3	Terms and conditions for use of Cloud_cci data
	4.4	Citation
	4.5	Feedback
	4.6	Re-distribution of Cloud_cci data
5.	Glos	ssary
6.	Refe	erences
An	nex	A - More examples of Cloud_cci v3 datasets
	A.1	48AVHRR-AMv3
	A.2	AVHRR-PMv3
	A.3	ATSR2-AATSRv2
An	nex	B - Complete description of data fields57
	B.1 I	Level 2 and Level 3U data57
	B.2 I	Level 3C

		Doc:	Cloud_cci_D3.3_PUG_v5.1.doc				
cloud		Date:	16 January 2020				
	cci	Issue:	5	Revision:	1	Page 4	

Annex C - Propagation of Level-	3 uncertainties into higher l	evel products	72

		Doc:	Cloud_cci_D3.3_PUG_v5.1.docx				
cloud		Date:					
	cci	lssue:	5	Revision:	1	Page 5	

Terms and conditions for use of Cloud_cci data:

The Cloud_cci datasets may be used by any user for any purpose, with the following terms and conditions:

- 1) Users of the CCI data are required to acknowledge the ESA Climate Change Initiative and Cloud_cci together with the individual data providers if the data are used in a presentation or publication. Please also cite any relevant dataset DOIs (see example citation text below).
- 2) Users of the CCI data are encouraged to interact with the CCI programme on use of the products, and to provide a copy of all reports and publications using the dataset. An offer of co-authorship should be considered, if the CCI data constitute a major component of a scientific publication.
- 3) Intellectual property rights (IPR) in the CCI data lie with the researchers and organisations producing the data.
- 4) Liability: No warranty is given as to the quality or the accuracy of the CCI data or its suitability for any use. All implied conditions relating to the quality or suitability of the information, and all liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.

Citing the scientific content of the AVHRR datasets:

Stengel, M., Stapelberg, S., Sus, O., Finkensieper, S., Würzler, B., Philipp, D., Hollmann, R., Poulsen, C., Christensen, M., and McGarragh, G.: Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties, Earth Syst. Sci. Data, 12, 41-60, https://doi.org/10.5194/essd-12-41-2020, 2020.

Citing the scientific content of the ATSR2-AATSR dataset:

Poulsen, C. A., Mcgarragh, G. R., Thomas, G. E., Stengel, M., Christiensen, M. W., Povey, A. C., Proud, S. R., Carboni, E., Hollmann, R., and Grainger, R. G.: Cloud_cci ATSR-2 and AATSR dataset version 3: a 17-yearclimatology of global cloud and radiation properties, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-217, in review, 2019.

Citing the dataset DOIs:

<u>Cloud_cci AVHRR-AMv3</u>:

Stengel, Martin; Sus, Oliver; Stapelberg, Stefan; Finkensieper, Stephan; Würzler, Benjamin; Philipp, Daniel; Hollmann, Rainer; Poulsen, Caroline (2019): ESA Cloud Climate Change Initiative (ESA Cloud_cci) data: Cloud_cci AVHRR-AM L3C/L3U CLD_PRODUCTS v3.0, Deutscher Wetterdienst (DWD), DOI:10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V003

Cloud_cci AVHRR-PMv3:

Stengel, Martin; Sus, Oliver; Stapelberg, Stefan; Finkensieper, Stephan; Würzler, Benjamin; Philipp, Daniel; Hollmann, Rainer; Poulsen, Caroline (2019): ESA Cloud Climate Change Initiative (ESA Cloud_cci) data: Cloud_cci AVHRR-PM L3C/L3U CLD_PRODUCTS v3.0, Deutscher Wetterdienst (DWD), DOI:10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003

<u>Cloud_cci ATSR2-AATSRv3</u>:

Poulsen, Caroline; McGarragh, Greg; Thomas, Gareth; Stengel, Martin; Christensen, Matthew; Povey, Adam; Proud, Simon; Carboni, Elisa; Hollmann, Rainer; Grainger, Don (2019): ESA Cloud Climate Change Initiative (ESA Cloud_cci) data: Cloud_cci ATSR2-AATSR L3C/L3U CLD_PRODUCTS v3.0, Deutscher Wetterdienst (DWD) and Rutherford Appleton Laboratory (Dataset Producer), DOI:10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V003

		Doc:	Cloud_cci_D3.3_PUG_v5.1.docx				
cloud		Date:	16 January 2020				
	cci	lssue:	5	Revision:	1	Page 6	

1. Introduction

1.1 The ESA Cloud_cci project

The ESA Cloud_cci project covers the cloud component in the European Space Agency's (ESA) Climate Change Initiative (CCI) programme (Hollmann et al., 2013). In the ESA Cloud_cci project, long-term and coherent cloud property datasets have been generated exploiting the synergic capabilities of different Earth observation missions (European and non-European) allowing for improved accuracies and enhanced temporal and spatial sampling better than those provided by the single sources. The Cloud_cci datasets are the attempt to respond to GCOS requirements for the Cloud Properties Essential Climate Variable (ECV).

Figure 1-1 Examples of Cloud_cci cloud products. Left: Pixel-based (Level 2), middle: daily composite on a global grid (Level 3U), right: monthly averaged on a global grid (Level 3C)

To make the Cloud_cci datasets improved compared to existing ones, the following two essential steps were undertaken:

- Revisit the measurement data (Level-1) and corresponding calibration performance and development of a carefully inter-calibrated and rigorously quality checked radiance data sets for AVHRR, so called Fundamental Climate Data Record (FCDR). Within this effort the calibration of AVHRR, MODIS and AATSR was compared and characterized. Please see the ATBDv5 for more information about all sensors used and their imaging characteristics. More information on the AVHRR FCDR produced and used is available in RAFCDRv1.0.
- 2) Development of two state-of-the-art physical retrieval systems that use the optimal estimation technique for a simultaneous, spectrally consistent retrieval of cloud properties including pixel-based uncertainty measures. The first retrieval framework is the Community Cloud retrieval for Climate (CC4CL; Sus et al., 2018; McGarragh et al., 2018) which is applied to AVHRR and AVHRR-heritage channels (i.e. channels which are available from all sensors) of MODIS and AATSR. The second retrieval framework is the Freie Universität Berlin AATSR MERIS Cloud retrieval (FAME-C; Carbajal Henken et al., 2014) and is applied to synergistic MERIS and AATSR measurements on-board of ENVISAT.

Based on these developments, six multi-annual, global datasets of cloud properties were generated using the passive imager satellite sensors AVHRR, MODIS, (A)ATSR and MERIS. These datasets were comprehensively evaluated (1) by using accurate reference observations of ground stations and space-based Lidar measurements and (2) by comparisons to existing and well-established global cloud property datasets. These datasets were published as **version 2** (version 1 being shorter, prototype datasets) and Digital Object Identifiers issued:

DOI:10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002 DOI:10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002 DOI:10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002 DOI:10.5676/DWD/ESA_Cloud_cci/ADDIS-Aqua/V002 DOI:10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002 DOI:10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002

		Doc:	Cloud_cci_D3.3_PUG_v5.1.docx					
270	Date:	16 January 2020						
	cci	lssue:	5	Revision:	1	Page 7		

These datasets were comprehensively documented in Stengel et al. (2017), the Product Validation and Intercomparisons Report (PVIR; PVIRv5.1), the Product User Guide (PUGv4.0) and the overarching Algorithm Theoretical Baseline Document (ATBD, ATBDv5) together with specific ATBDs for FAME-C (ATBD-FAME-Cv5) and CC4CL (ATBD-CC4CLv5).

To facilitate a suitable application of Cloud_cci datasets for model evaluation, satellite simulators have been developed, tested and published (Eliasson et al., 2018 and Stengel et al., 2018).

In addition to the datasets mentioned above, AVHRR and AATSR based datasets were reprocessed again building the **version 3.0 datasets**, based on an updated CC4CL, partly covering longer periods (AVHRR) and including an extended product portfolio by including shortwave and longwave, all-sky and clear-sky radiative flux properties and top and bottom of the atmosphere (TOA and BOA).

The remaining part of this document will exclusively focus on the algorithm version used for generation of the version 3 datasets, for which the following DOI were issued:

10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003 10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V003 10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V003.

In addition to this PUG, these v3 datasets are being documented in ATBDv6.2, PVIRv6.1 and Stengel et al. (2020).

1.2 The Cloud_cci version 3 datasets

Three Cloud_cci version 3 cloud property datasets have been generated, based on AVHRR and ATSR2+AATSR, utilizing the AVHRR-heritage channels (0.6, 0.8, 1.6/3.7, 10.8, 12.0 μ m) only. The retrieval system used was an updated version of CC4CL. Since AVHRR sensors were separated into morning and afternoon orbits. Figure 1-2 shows the temporal coverage of the v3 datasets.

Table 1-1 summarizes the algorithms, sensors and satellites used for each dataset. The official versions of the datasets, as released under the issued Digital Object Identifies (DOIs, see Table 1-1), do not contain any diurnal cycle or satellite drift correction. Potential methods for such a drift correction were investigated for AVHRR and were documented in RODCv1.0. In Figure 1-3 the local observation time of each individual sensor considered are visualized. This information is often essential for properly characterizing time series of cloud properties derived from the satellite-based climate datasets. Other important aspects are the imaging properties. The sensors differ in terms of native footprint resolution (1x1km² for ATSR2, AATSR; 5x1km² for AVHRR GAC). This, together with the sensor swath width, leads to very different observation frequency and spatial coverage. While AVHRRs have a complete global coverage within a day, the AATSR sensor needs about 3 days to accomplish this, however, with a higher spatial resolution compared to AVHRR.

Figure 1-2 Overview of Cloud_cci v3 datasets and the time periods they cover.

All datasets contain identical sets of cloud properties: cloud mask/fraction (CMA/CFC), cloud phase/liquid cloud fraction (CPH), cloud top pressure/height/temperature (CTP/CTH/CTT), cloud effective radius (CER), cloud optical thickness (COT), spectral cloud albedo at two wave lengths (CLA) and liquid/ice water path (LWP/IWP). In addition a set of radiative broadband fluxes are contained: top of the atmosphere (TOA) and bottom of the atmosphere (BOA) radiative fluxes for shortwave and longwave, in clear-sky and all-sky conditions, upwelling and downwelling.

		Doc:	Cloud_cci_D3.3_PUG_v5.1.docx					
cloud		Date:	16 January 2020					
	cci	lssue:	5	Revision:	1	Page 8		

The data is presented at different processing levels ranging from pixel-based retrieval products (Level-2), which are additionally projected (sampling - no averaging) onto a global Latitude-Longitude grid of 0.05° resolution (global composite, Level-3U), to monthly data summarizes including averages, standard deviation and histograms - all defined on a global Latitude-Longitude grid of 0.5° resolution (Level-3C). See Section 1.3 for more details.

All cloud properties are accompanied by uncertainty measures at all processing levels, which range from optimal estimation based uncertainty on pixel level (Level-2 and Level-3U) to propagated uncertainties in the monthly Level-3C products. See Section 1.3 for more information.

Key strengths of Cloud_cci version 3 datasets:

- The Cloud_cci datasets are based on a state-of-the art retrieval systems named CC4CL that uses the optimal estimation (OE) technique and are applied to passive imager sensors of current and past European and non-European satellite missions.
- All v3 datasets contain consistent sets of cloud and radiative flux properties.
- The measurement records of the utilized sensors have been revisited, re-characterized and, in case of AVHRR, re-calibrated.
- One special feature of CC4CL is, among others, its applicability to multiple sensors: ATSR2, AATSR, MODIS, AVHRR (and other passive imaging sensors) down to spatial footprint resolutions of 1km.
- Radiative consistency of derived cloud parameters is achieved by the OE-based, iterative fitting of a physically consistent cloud model (and radiative transfer simulations therefrom) to the sensor measurements in the visible and thermal infrared spectral range.
- Pixel-level uncertainty characterization is facilitated by the OE technique, which is physically consistent (1) with the uncertainties of the input data (e.g. measurements, a-priori) and (2) among the retrieved variables. These pixel-level uncertainties are further propagated into the monthly products using a developed sound mathematical framework.
- Potential to combine AVHRR-heritage datasets to achieve increased temporal resolution by including multiple polar-orbiting satellite instruments, which also allows for mature cloud property histograms on 0.5° resolution due to highly increased sampling rate.
- Comprehensive assessment and documentation of the retrieval schemes and the derived cloud property datasets, including possibilities of drift- and diurnal cycle corrections.
- Availability of a developed Cloud_cci satellite simulator facilitating the applicability of Cloud_cci data in regional and global climate models evaluation efforts.
- All datasets are available in netcdf (v4) format and fulfil high CCI-internal and external data standards (e.g. Climate and Forecast CF conventions).

Table 1-1 Cloud_cci v3 datasets with the algorithms,	, sensor(s) and satellite(s) used and the time
periods they cover. The Digital Object Identifiers (DOI) of all datasets are also listed.

Dataset name	Sensor(s)	Satellite(s)	Time period	Algorithm		
Cloud_cci AVHRR-PMv3	AVHRR-2/-3	NOAA-7,-9,-11,-14,-16,-18,-19	1982-2016	CC4CL		
DOI:10.5676/DWD/ESA_Cloud_co	ci/AVHRR-PM/V003					
Cloud_cci AVHRR-AMv3	AVHRR-2/-3	NOAA-12,-15,-17, Metop-A	1991-2016	CC4CL		
DOI:10.5676/DWD/ESA_Cloud_co	ci/AVHRR-AM/V003					
Cloud_cci ATSR2-AATSRv3	ATSR2, AATSR	ERS2, ENVISAT	1995-2012	CC4CL		
DOI:10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V003						

	cloud	Doc:	Cloud_cci_D3.3_PUG_v5.1.docx					
270		Date:						
	cci	lssue:	5	Revision:	1	Page 9		

Figure 1-3 Time periods and local observation times (equator crossing times) of each satellite sensor considered in Cloud_cci.

1.3 Cloud_cci cloud products

The cloud properties derived on pixel level of each utilized sensor are listed in Table 1-2. It is important to note that the cloud properties CLA, LWP, IWP are not directly retrieved, but rather determined from retrieved COT and CER in a post processing step. The same applies to CTH and CTT, which are inferred from the retrieved CTP. In addition, it needs to be noted that for the determination of radiative fluxes a fair amount of ERA-Interim data was required.

Based on the pixel level retrievals the data is further processed into different processing levels as summarized in Table 1-3. Level-3U denotes a global composite on a global Latitude-Longitude grid (of 0.05° resolution) onto which the Level-2 data is sampled (see Section 4.1 for more details on Level-3U sampling). Level-3C products are also defined on Latitude-Longitude grid (here 0.5° resolution) onto which the properties are averaged or their frequency collected (histograms). Further separation of cloud properties in Level-3C in e.g. day/night, liquid/ice, were made wherever suitable (see Table 1-4).

Table 1-2 List of generated cloud properties. CMA/CFC and CPH are derived in a pre-processing step. In the next step, COT, CER and CTP are retrieved simultaneously by fitting a physically consistent cloud/atmosphere/surface model to the satellite observations using optimal estimation (OE). Moreover, LWP and IWP are obtained from COT and CER. In addition, spectral cloud albedo (CLA) for two visible channels are derived. In a post-processing step, derived cloud properties and ERA-Interim information are used to determine radiative broadband fluxes.

Variable	Abbrev.	Definition
Cloud mask / Cloud fraction	CMA/ CFC	A binary cloud mask per pixel (L2, L3U) and therefrom derived monthly total cloud fractional coverage (L3C, L3S) and separation into 3 vertical classes (high, mid-level, low clouds) following ISCCP classification (Rossow and Schiffer, 1999).
Cloud phase	СРН	The thermodynamic phase of the retrieved cloud (binary: liquid or ice; in L2, L3U) and the therefrom derived monthly liquid cloud fraction (L3C, L3S).

		Doc:		Cloud_cci_D3.3_PUG_v5.1.		
273	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 10

Variable	Abbrev.	Definition
Cloud optical thickness	СОТ	The line integral of the absorption coefficient and the scattering coefficient (at $0.55\mu m$ wavelength) along the vertical in cloudy pixels.
Cloud effective radius	CER	The area-weighted radius of the cloud drop and crystal particles, respectively.
Cloud top pressure/ height/ temperature	CTP/ CTH/ CTT	The air pressure [hPa] /height [m] /temperature [K] of the uppermost cloud layer that could be identified by the retrieval system.
Cloud liquid water path/ Ice water path	LWP/ IWP	The vertical integrated liquid/ice water content of existing cloud layers; derived from CER and COT. LWP and IWP together represent the cloud water path (CWP)
Joint cloud property histogram	JCH	This product is a spatially resolved two-dimensional histogram of combinations of COT and CTP for each spatial grid box.
Spectral cloud albedo	CLA	The blacksky cloud albedo derived for channel 1 (0.67 $\mu m)$ and 2 (0.87 $\mu m),$ respectively (experimental product)
Cloud effective emissivity	CEE	cloud radiative thickness in the infrared typically referred to as the "effective emissivity"
Top of atmosphere upwards/downwards flux	ΤΟΑ	Shortwave (SW) and longwave (LW) fluxes at the Top of the atmosphere, upwelling and downwelling
Top of atmosphere upwards/downwards flux - clear-sky	TOA _{clear}	Shortwave (SW) and longwave (LW) fluxes at the Top of the atmosphere, upwelling and downwelling - for clear sky conditions
Bottom of atmosphere (surface) upwards/downwards flux	BOA	Shortwave (SW) and longwave (LW) fluxes at the Bottom of the atmosphere, upwelling and downwelling
Bottom of atmosphere (surface) upwards/downwards flux - clear-sky	BOA _{clear}	Shortwave (SW) and longwave (LW) fluxes at the Bottom of the atmosphere, upwelling and downwelling - for clear sky conditions
Photosynthetically active radiation	PAR	Bottom of atmosphere incoming shortwave radiation in the spectral range between 400 and 700nm

		Doc:	Cloud_cci_D3.3_PUG_v5.1.do				
273	cloud	Date:				16 January 2020	
	cci	lssue:	5	Revision:	1	Page 11	

 Table 1-3 Processing levels of Cloud_cci data products. Level-3U, Level-3C and Level-3S are each directly derived from Level-2.

Processing level	Spatial resolution	Description
Level-2 (L2)	AATSR: 1km AVHRR: 5 km	Retrieved cloud variables at satellite sensor pixel level, thus with the same resolution and location as the sensor measurements (Level-1)
Level-3U (L3U)	Latitude-Longitude grid at 0.05° res.	Cloud properties of Level-2 orbits projected onto a global space grid without combining any observations of overlapping orbits. Only subsampling is done. Common notation for this processing level is also L2b. Temporal coverage is 24 hours (0-23:59 UTC).
Level-3C (L3C)	Latitude-Longitude grid at 0.5° res.	Cloud properties of Level-2 orbits of one single sensor combined (averaged / sampled for histograms) on a global space grid. Temporal coverage of this product is 1 month.

Table 1-4 Cloud_cci product features incl. day and night separation, liquid water and ice as well as histogram representation. Level-3U refers to the un-averaged, pixel-based cloud retrievals sampled onto a global Latitude-Longitude (lat/lon) grid. ¹CMA in Level-2 and Level-3U is a binary cloud mask. All products listed exist in each dataset listed above.

	Level 2 swath based 1km/5km	Level-3U daily sampled global 0.05° lat/lon grid	Level-3C monthly averages global 0.5° lat/lon grid	Level-3C monthly histograms global 0.5° lat/lon grid
CMA/CFC	✓ as CMA ¹	✓ as CMA ¹	✓day/night/high/mid/low	-
СТР, СТН, СТТ	✓	✓	~	✓ liquid/ice
СРН	1	1	✓ day/night	-
СОТ	1	1	✓ liquid/ice	✓ liquid/ice
CER	✓	1	✓ liquid/ice	✓ liquid/ice
LWP			✓	
IWP	✓ as CWP	✓ as CWP	1	✓ as CWP
CLA	✔ 0.6/0.8µm	✔ 0.6/0.8µm	✔ 0.6/0.8µm	✓ 0.6/0.8µm/liquid/ice
JCH	-	-	-	✓ liquid/ice
TOA up,dn,sw,lw	1	1	✓	-
BOA up,dn,sw,lw	1	4	1	-
PAR	✓	1	1	-

cloud cci		Doc:	Cloud_cci_D3.3_PUG_v5.1.docx				
	cloud	Date:		16 January 2020			
	cci	lssue:	5	Revision:	1	Page 12	

2. Product description and guidance

This section summarizes the core cloud properties derived in Cloud_cci. These properties are common among all Cloud_cci datasets.

2.1 Cloud mask & fraction

The used cloud detection schemes outputs a binary clouds mask (0: clear, 1: cloudy) on pixel level (Level-2) and for globally subsampled data products (Level-3U, 0.05°). The binary information is averaged to infer monthly mean cloud fraction (Level-3C, 0.5°). Examples of Level-3U and Level-3C are shown in Figure 2-1.

Figure 2-1 Left: Global map of Cloud_cci L3U cloud mask for 2008/06/22. Right: Global map of Cloud_cci monthly mean total cloud fraction for 2008/06. (Both examples are taken from the AVHRR-PM dataset. Examples of all datasets are shown in Annex A)

Short algorithm description:

Cloud detection in CC4CL is based on a neural network with which CALIOP optical thickness is approximated, followed by an application of scene-dependent thresholds. Please see Sus et al. (2018) for more details.

Uncertainty information:

- Cloud detection uncertainty on pixel level (Level-2, Level-3U) originates from quantifying the agreement to CALIOP cloud mask as a function of used threshold. The uncertainty values provided on Level-2 are to be interpreted as probability (in %) that the given cloud mask information is not correct (e.g. higher value -> higher uncertainty).
- Level-3 uncertainties provided for cloud fraction are arithmetically averaged Level-2 uncertainties and can, together with the standard deviation provided, serve as qualitative measure for grid boxes with higher/lower uncertainty of the mean cloud fraction.

Known limitations:

- Discrimination of heavy aerosol and cloudy is not optimal, thus aerosol is sometimes flagged as clouds in such conditions. It is advised to be careful in the interpretation cloudiness in periods with dust / volcanic ash outbreaks. Cloudiness is overestimated in these conditions.
- Problematic cloud detection over mountainous regions (also applies to all other cloud properties)
- Cloud detection during polar night over snow and ice is generally difficult. Comparisons to other AVHRR datasets reveal that the CC4CL cloud detection has also some shortcoming during polar day although it performs better than during polar night.

		Doc:	Cloud_cci_D3.3_PUG_v5.1.do					
270	cloud	Date:				16 January 2020		
	cci	lssue:	5	Revision:	1	Page 13		

- Cloud detection in twilight conditions is of rather poor quality due to the small number of channels used. Due to the orbit constellation, this issue is impacting most significantly the AVHRR-AM set before 1999.
- AVHRR-PM/AM time series of CFC should not be used for trend analysis without performing a proper satellite drift correction first.
- Due to a limitation of passive imagers, the cloud fraction is usually biased toward lower values, compared to example CALIOP.

Product level	Data field name	Description
Level-2	cc_total	Cloud mask (0: cloud free; 1: cloudy)
Level-3U	cmask_asc cmask_desc	Cloud mask, ascending node of orbit Cloud mask, descending node of orbit
Level-3U	cmask_asc_unc cmask_desc_unc	Cloud mask uncertainty, ascending node Cloud mask uncertainty, descending node
Level-3C	cfc	Total cloud fraction using all available observations
Level-3C	cfc_unc	Uncertainty of total cloud fraction using all available observations
Level-3C	cfc_day cfc_night cfc_twi	Daytime cloud fraction Nighttime cloud fraction Twilight cloud fraction
Level-3C	cfc_low cfc_mid cfc_high	Cloud fraction of low clouds Cloud fraction of mid-level clouds Cloud fraction of high clouds Separation according to cloud top pressure limits 680 hPa and 440 hPa

Cloud mask/fraction - data fields* and descriptions:

	cloud	Doc:	Cloud_cci_D3.3_PUG_v5.1.docx					
		Date:	16 January 2020					
	cci	lssue:	5	Revision:	1	Page 14		

2.2 Cloud phase & liquid cloud fraction

Cloud phase in Level-2 and Level-3U products is a binary information if the detected cloud is of liquid or ice type. In Level-3 products, this is converted to the fraction of liquid clouds with respect to all detected clouds. Examples of Level-3U and Level-3C are shown in Figure 2-2.

Figure 2-2 Left: Global map of Cloud_cci L3U cloud phase for 2008/06/22. Right: Global map of Cloud_cci monthly mean liquid cloud fraction for 2008/06. (Both examples are taken from the AVHRR-PM dataset. Examples of all datasets are shown in Annex A)

Short algorithm approach description:

Cloud phase detection in v3 datasets is based on a neural network with which CALIOP optical thickness is approximated, followed by an application of scene-dependent thresholds. Please see ATBDv6.2 and Stengel et al. (2020) for more details.

Uncertainty information:

- Cloud phase uncertainty on pixel level (Level-2, Level-3U) originates from quantifying the agreement to CALIOP cloud phase as a function of used threshold. The uncertainty values provided on Level-2 are to be interpreted as probability (in %) that the given cloud phase information is not correct (e.g. higher value -> higher uncertainty).
- Level-3 uncertainties provided for cloud fraction are arithmetically averaged Level-2 uncertainties and can, together with the standard deviation provided, serve as qualitative measure for grid boxes with higher/lower uncertainty of the mean liquid cloud fraction.

Known limitations:

- AVHRR-PM/AM time series of CFC should not be used for trend analysis without performing a proper satellite drift correction first.
- ATSR2-AATSR data is likely to be biased towards ice. The reason for this is still to be investigated.

cloud cci		Doc:	Cloud_cci_D3.3_PUG_v5.1.doc				
	cloud	Date:		16 January 202			
	cci	lssue:	5	Revision:	1	Page 15	

Cloud phase / liquid cloud fraction - data fields* and descriptions:

Product level	Data field name	Description
Level-2	phase	Cloud thermodynamic phase (1: water cloud, 2: ice cloud)
Level-2	phase_pavolonis	Cloud type (0: clear,1: switched to liquid, 2: fog, 3: liquid, 4: supercooled, 5: switched to ice, 6: opaque ice, 7: cirrus, 8: overlapping, 9: probably opaque ice)
Level-3U	cph_asc cph_desc	Cloud thermodynamic phase, ascending node of orbit Cloud thermodynamic phase, descending node of orbit
Level-3U	cty_asc cty_desc	Cloud type, ascending node of orbit Cloud type, descending node of orbit (0: clear,1: switched to liquid, 2: fog, 3: liquid, 4: supercooled, 5: switched to ice, 6: opaque ice, 7: cirrus, 8: overlapping, 9: probably opaque ice)
Level-3C	cph	Liquid cloud fraction using all available observations
Level-3C	cph_std	Standard deviation over all Level 2 phase retrievals
Level-3C	cph_day	Liquid cloud fraction using daytime observations only
Level-3C	cph_day_std	Standard deviation over all daytime Level 2 phase retrievals

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
1 Ala	cloud	Date:				16 January 2020
-	cci	lssue:	5	Revision:	1	Page 16

2.3 Cloud optical thickness

The cloud optical thickness (COT) describes the line integral of the absorption coefficient and the scattering coefficient along the instruments line of sight in cloudy pixels (Level-2 and Level-3U). Level-3C contains the monthly arithmetical (and logarithmic) averages together with standard deviation and separations into liquid and ice clouds. Also, 1-dimensional histograms of COT exist in Level-3C. Examples of Level-3U and Level-3C are shown in Figure 2-3.

Figure 2-3 Left: Global map of Cloud_cci L3U cloud optical thickness for 2008/06/22. Right: Global map of Cloud_cci monthly mean cloud topical thickness for 2008/06. (Both examples are taken from the AVHRR-PM dataset. Examples of all datasets are shown in Annex A)

Short algorithm approach description:

Cloud optical thickness is direct output of the optimal estimation retrieval CC4CL (McGarragh et al., 2018; Sus et al., 2018) in which a physical model of the cloud is systematically altered until the corresponding resulting simulated radiances fit the measurements. Simulations look up tables (LUTs) strongly depend on the pre-determined cloud phase.

Uncertainty information:

- Along with the COT retrieval, the OE framework provides COT uncertainty on Level-2 (also in Level-3U) which is based on rigorous uncertainty propagation of the input data. According to OE theory the COT uncertainty describes the 68.2% confidence interval around the retrieved COT. This uncertainty is also propagated into the Level-3C products.
- The uncertainty is strongly dependent on the surface BRDF hence high BRDF surfaces will result in high values of uncertainty, e.g. over snow and ice.

Known limitations:

- COT is a daytime product only.
- In cases of wrong phase assigned, the optical thickness is likely to have significant errors.
- In the case of incorrectly assigned surface BRDF the optical depth is likely to be biased. Too high BRDF the COT will be biased low. Too low BRDF the COT will be biased high.
- In case of sub-pixel clouds or cloud borders the COT is likely to have significant errors.
- In case of optically thin clouds above (especially poorly) defined highly reflecting surface, the COT retrieval might be problematic.
- For very optically thick clouds, the measurements go into saturation and thus the sensitivity of the measurement to the COT is small. Those values should be accompanied by large uncertainty values.

Cloud optical thickness - data fields* and descriptions:

Product level	Data field name	Description
Level-2	cot	Cloud optical thickness
Level-2	cot_unc	Cloud optical thickness uncertainty
Level-3U	cot_asc cot_desc	Cloud optical thickness, ascending node of orbit Cloud optical thickness, descending node of orbit
Level-3U	cot_asc_unc cot_desc_unc	Cloud optical thickness uncertainty, ascending Cloud optical thickness uncertainty, descending
Level-3C	cot	Cloud optical thickness, mean of individual pixel retrievals
Level-3C	cot_log	Cloud optical thickness, logarithmic mean of individual pixel retrievals
Level-3C	cot_unc	Cloud optical thickness - mean of individual pixel uncertainties
Level-3C	cot_std	Cloud optical thickness - standard deviation of individual pixel retrievals
Level-3C	cot_prop_unc	Cloud optical thickness - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
Level-3C	cot_corr_unc	Cloud optical thickness - correlated uncertainty assuming correlation of 0.1
Level-3C	cot_liq cot_ice	Liquid/ice cloud optical thickness - mean of individual pixel retrievals
Level-3C	cot_liq_std cot_ice_std	Liquid/ice cloud optical thickness - standard deviation of individual pixel retrievals
Level-3C	cot_liq_unc cot_ice_unc	Liquid/ice cloud optical thickness - mean of individual pixel uncertainties
Level-3C	cot_liq_prop_unc cot_ice_prop_unc	Liquid cloud optical thickness - propagated uncertainty
Level-3C	cot_liq_corr_unc cot_ice_corr_unc	Liquid/ice cloud optical thickness - correlated uncertainty assuming correlation of 0.1
Level-3C	hist1d_cot	Cloud optical thickness - histogram

	Doc:	Cloud_cci_D3.3_PUG_v5.1.dc				
272	cloud	Date:	16 Ja			16 January 2020
	cci	lssue:	5	Revision:	1	Page 18

2.4 Cloud effective radius

The cloud effective radius (CER) describes the area weighted radius of the cloud droplet and crystal particles, respectively (Level-2 and Level-3U). Level-3C contains the monthly arithmetical averages together with standard deviation and separations into liquid and ice clouds. Also, 1-dimensional histograms exist in Level-3C. Examples of Level-3U and Level-3C are shown in Figure 2-4.

Figure 2-4 Left: Global map of Cloud_cci L3U cloud effective radius for 2008/06/22. Right: Global map of Cloud_cci monthly mean cloud effective radius for 2008/06. (Both examples are taken from the AVHRR-PM dataset. Examples of all datasets are shown in Annex A)

Short algorithm approach description:

Cloud effective radius is direct output of the optimal estimation retrieval CC4CL (McGarragh et al., 2018; Sus et al., 2018) in which a physical model of the cloud is systematically altered until the corresponding resulting simulated radiances fit the measurements. Simulations look up tables (LUTs) strongly depend on the pre-determined cloud phase.

Uncertainty information:

- Along with the CER retrieval, the OE framework provides CER uncertainty on Level-2 (also in Level-3U) which is based on rigorous uncertainty propagation of the input data. According to OE theory the CER uncertainty describes the 68.2% confidence interval around the retrieved CER. This uncertainty is also propagated into the Level-3C products.
- The uncertainty is strongly dependent on the surface BRDF hence high BRDF surfaces will result in high values of uncertainty, e.g. over snow and ice.
- The uncertainty in the underlying ice optical model is currently not propagated into the final result. As a significant uncertainty in ice optical models can be assumed, the currently reported CER uncertainty is likely to be too low.

Known limitations:

- CER is a daytime product only
- In cases of wrong phase assigned, the effective radius is likely to have significant errors.
- In case of sub-pixel clouds or cloud boarders, the effective radius is likely to have significant errors.

Cloud effective radius - data fields* and descriptions:

Product level	Data field name	Description
Level-2	cer	Cloud effective radius
Level-2	cer_unc	Cloud effective radius uncertainty
Level-3U	cer_asc cer_desc	Cloud effective radius, ascending node of orbit Cloud effective radius descending node of orbit
Level-3U	cer_asc_unc cer_desc_unc	Cloud effective radius uncertainty, ascending Cloud effective radius uncertainty, descending
Level-3C	cer	Cloud effective radius, mean of individual pixel retrievals
Level-3C	cer_unc	Cloud effective radius - mean of individual pixel uncertainties
Level-3C	cer_std	Cloud effective radius - standard deviation of individual pixel retrievals
Level-3C	cer_prop_unc	Cloud effective radius - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
Level-3C	cer_corr_unc	Cloud effective radius - correlated uncertainty assuming correlation of 0.1
Level-3C	cer_liq cer_ice	Liquid/ice cloud effective radius - mean of individual pixel retrievals
Level-3C	cer_liq_std cer_ice_std	Liquid/ice cloud effective radius - standard deviation of individual pixel retrievals
Level-3C	cer_liq_unc cer_ice_unc	Liquid/ice cloud effective radius - mean of individual pixel uncertainties
Level-3C	cer_liq_prop_unc cer_ice_prop_unc	Liquid/ice cloud effective radius - propagated uncertainty
Level-3C	cot_liq_corr_unc cot_ice_corr_unc	Liquid/ice cloud optical thickness - correlated uncertainty assuming correlation of 0.1
Level-3C	hist1d_cer	Cloud effective radius - histogram

		Doc:	Cloud_cci_D3.3_PUG_v5.1.do				
272	cloud	Date:	16 January 2020				
C	cci	lssue:	5	Revision:	1	Page 20	

2.5 Cloud top pressure/height/temperature

The cloud top pressure (CTP) refers to the atmospheric pressure at the vertical position of the cloud top. CTP is directly retrieved at pixel level (Level-2, also contained in Level-3U); cloud top height (CTH) and cloud top temperature (CTT) are inferred from CTP using collocated model profiles of temperature, height and pressure. Level-3C contains the monthly arithmetical averages together with standard deviation and separations into liquid and ice clouds. Also, 1-dimensional histograms of CTP and CTT exist in Level-3C. Examples of Level-3U and Level-3C are shown in Figure 2-5.

Figure 2-5 Left: Global map of Cloud_cci L3U cloud top pressure (0: clear; 1: cloudy) for 2008/06/22. Right: Global map of Cloud_cci monthly mean cloud top pressure for 2008/06. (Both examples are taken from the AVHRR-PM dataset. Examples of all datasets are shown in Annex A)

Short algorithm approach description:

Cloud top pressure is direct output of the optimal estimation retrieval CC4CL (McGarragh et al., 2018; Sus et al., 2018) in which a physical model of the cloud is systematically altered until the corresponding resulting simulated radiances fit the measurements. Simulations look up tables (LUTs) strongly depend on the pre-determined cloud phase. Cloud top pressure is also converted to cloud top height and temperature using model profiles. Based on estimated cloud transmissivity, a correction to CTP, CTH and CTT is done and provided in separate fields. In these corrected fields the systematic underestimation of CTH (overestimation for CTP and CTT) occurring for high, semi-transparent clouds is reduced compared to the uncorrected values. For CTP the aggregation to monthly averages is additionally done logarithmically. Based on radiance ratio of the two infrared channels at 10.8 and 12.0 μ m, post-processed corrected cloud top pressure, height, temperature are calculated and provided.

Uncertainty information:

• Along with the CTP retrieval, the OE framework provides CTP uncertainty on Level-2 (also in Level-3U) which is based on rigorous uncertainty propagation of the input data. According to OE theory the CTP uncertainty describes the 68.2% confidence interval around the retrieved CTP. The CTP uncertainty is also propagated into uncertainties of CTH and CTT, and also into the Level-3C products. The CTP uncertainty has been validated using Calipso/Cloudsat data as reference and found to not represent the actual uncertainty well

Known limitations:

• In semi-transparent (ice) cloud conditions, the cloud top will be assigned too low. This is caused by the very small impact that optically thin clouds have on the infrared radiation, which is primarily

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
1 Alexandre	cloud	Date:	16 January 2020			
	cci	lssue:	5	Revision:	1	Page 21

used to determine the vertical placement of clouds. In such cases the measured radiance is a mixture of signals coming from the emission of the thin clouds and emission from below the cloud (i.e. lower level clouds or surface), thus the corrected vertical placement of the clouds is very difficult and usually too low.

- Multi-layer clouds are not modelled hence the CTH for cases of an upper layer of thin cirrus will effectively retrieve a radiative height (approx. 1 optical depth into the cloud).
- The corrected cloud top pressure/height/temperature retrievals are not radiatively consistent with the retrieved COT and CER, which means that radiative simulations do not fit the measurements anymore, while they do when using the uncorrected retrievals.
- The uncertainty has been validated using Calipso/Cloudsat data as reference and found to not represent the actual uncertainty well.

Product level	Data field name	Description
Level-2	ctp/cth/ctt	Cloud top pressure/height/temperature
Level-2	ctp/cth/ctt_uncertainty	Cloud top pressure/height/temperature uncertainty
Level-2	ctp/cth/ctt_corrected	Corrected Cloud top pressure/ height/temperature uncertainty
Level-2	ctp/cth/ctt_corrected_unc	Corrected cloud top pressure/height/ temperature uncertainty
Level-3U	ctp/cth/ctt_asc ctp/cth/ctt_desc	Cloud top pressure/height/temperature, ascending node of orbit Cloud top pressure/height/temperature, descending node of orbit
Level-3U	ctp/cth/ctt_asc_unc ctp/cth/ctt_desc_unc	Cloud top pressure/height/temperature uncertainty, ascending node of orbit Cloud top pressure/height/temperature uncertainty, descending node of orbit
Level-3U	ctp/cth/ctt_corrected_asc ctp/cth/ctt_corrected_desc	Corrected cloud top pressure/height/ temperature, ascending node of orbit Corrected cloud top pressure/height/ temperature, descending node of orbit
Level-3U	ctp/cth/ctt_corrected_asc_unc ctp/cth/ctt_corrected_desc_unc	Corrected cloud top pressure/height/temp. uncertainty, ascending node of orbit Corrected cloud top pressure/height/temp. uncertainty, descending node of orbit
Level-3C	ctp/cth/ctt	Cloud top pressure/height/temperature, mean of individual pixel retrievals

Cloud top pressure/height/temperature - data fields* and descriptions:

cloud		Doc:		Cloud_cci_D3.3_PUG_v5.1.doc				
		Date:		16 January 202				
cci	cci	lssue:	5	Revision:	1	Page 22		

Product level	Data field name	Description
Level-3C	ctp/cth/ctt_std	Cloud top pressure/height/temp standard deviation of individual pixel retrievals
Level-3C	ctp/cth/ctt_unc	Cloud top pressure/height/temperature - mean of individual pixel uncertainties
Level-3C	ctp/cth/ctt_corrected	Corrected cloud top pressure/height/ temperature, mean of individual pixel retrievals
Level-3C	ctp/cth/ctt_corrected_std	Corrected cloud top pressure/height/ temperature, standard deviation of individual pixel retrievals
Level-3C	ctp/cth/ctt_prop_unc	Cloud top pressure/height/temperature - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
Level-3C	ctp/cth/ctt_corr_unc	Cloud top pressure/height/temperature - correlated uncertainty assuming correlation of 0.1
Level-3C	ctp/cth/ctt_corrected_prop_unc	Corrected cloud top pressure/height/temperature - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
Level-3C	ctp/cth/ctt_corrected_corr_unc	Corrected cloud top pressure/height/temperature - correlated uncertainty assuming correlation of 0.1
Level-3C	hist1d_ctp/hist1d_ctt	Cloud top pressure/temperature - histogram

	cloud	Doc:	Cloud_cci_D3.3_PUG_v5.1.doc				
273		Date:		16 January 2020			
T.	cci	lssue:	5	Revision:	1	Page 23	

2.6 Cloud liquid water path

The vertical integrated cloud water content in liquid cloud pixels (LWP, cloud liquid water path) is calculated from optical thickness and effective radius. It exists as cloud water path (in liquid cloud pixels) in Level-2 and Level-3U and is averaged to monthly mean liquid water path in Level-3C. Level-3C also holds 1-dimensional histograms of liquid water path. Examples of Level-3U (cloud water path is shown) and Level-3C are shown in Figure 2-6.

Figure 2-6 Left: Global map of Cloud_cci L3U cloud water path for 2008/06/22. Right: Global map of Cloud_cci monthly mean liquid water path for 2008/06. (Both examples are taken from the AVHRR-PM dataset. Examples of all datasets are shown in Annex A)

Short algorithm approach description:

Cloud water path (LWP) is diagnosed from retrieved COT and CER using the Stephens (1978) relation (More details in ATBD-CC4CLv6.2). Vertically homogeneous clouds are assumed, thus a factor of 2/3 is used in the Stephens formula.

Uncertainty information:

• The OE framework provides pixel-based uncertainty estimates for COT and CER which are propagated through the Stephens (1978) formula. The resulting LWP uncertainty for Level-2 (also in Level-3U) therefore described the 68.2% confidence interval around the diagnosed LWP. The LWP uncertainty is also propagated into the Level-3C products.

Known limitations:

- LWP is a daytime product only
- Since LWP is computed from retrieved COT and CER, same limitations as for COT and CER apply for LWP.
- The method used assumes vertically homogeneous clouds, which might deviate from truth. In case of vertically inhomogeneous cloud layers, e.g. multi-layer clouds, the LWP retrieval is likely to show large errors, since the CER is retrieved from the most upper cloud layers and may not be representative for the entire vertical column.
- In cases of wrongly assigned cloud phase, i.e. ice cloud is treated as liquid cloud, the retrieved LWP will show large errors.

Cloud liquid water path - data fields* and descriptions:

Product level	Data field name	Description
Level-2	cwp	Cloud water path
Level-2	cwp_uncertainty	Cloud water path uncertainty
Level-3U	cwp_asc cwp_desc	Cloud water path, ascending node of orbit Cloud water path, descending node of orbit
Level-3U	cwp_asc_unc cwp_desc_unc	Cloud water path uncertainty, ascending Cloud water path uncertainty, descending
Level-3C	lwp	Cloud liquid water path, mean of individual pixel retrievals
Level-3C	lwp_unc	Cloud liquid water path - mean of individual pixel uncertainties
Level-3C	lwp_std	Cloud liquid water path - standard deviation of individual pixel retrievals
Level-3C	lwp_prop_unc	Cloud liquid water path - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
Level-3C	lwp_corr_unc	Cloud liquid water path - correlated uncertainty assuming correlation of 0.1
Level-3C	lwp_allsky	Cloud liquid water path all-sky - grid box mean of individual pixel retrievals, including clear-sky pixels
Level-3C	hist1d_cwp	Cloud water path - histogram

	Doc:	Cloud_cci_D3.3_PUG_v5.1.doc				
272	cloud	Date:	16 January			
	cci	lssue:	5	Revision:	1	Page 25

2.7 Cloud ice water path

The vertical integrated cloud water content in ice cloud pixels (IWP, cloud ice water path) is calculated from optical thickness and effective radius. It exists as cloud water path (in ice cloud pixels) in Level-2 and Level-3U and is averaged to monthly mean ice water path in Level-3C. Level-3C also holds 1-dimensional histograms of ice water path. Examples of Level-3U (cloud water path is shown) and Level-3C are shown in Figure 2-7.

Figure 2-7 Left: Global map of Cloud_cci L3U cloud water path for 2008/06/22. Right: Global map of Cloud_cci monthly mean ice water path for 2008/06. (Both examples are taken from the AVHRR-PM dataset)

Short algorithm approach description:

Cloud ice path (IWP) is diagnosed from retrieved COT and CER using the Stephens (1978) relation (More details in ATBD-CC4CLv6.2).

Uncertainty information:

• The OE framework provides pixel-based uncertainty estimates for COT and CER which are propagated through the Stephens (1978) formula. The resulting IWP uncertainty for Level-2 (also in Level-3U) therefore described the 68.2% confidence interval around the diagnosed IWP. The IWP uncertainty is also propagated into the Level-3C products.

Known limitations:

- IWP is a daytime product only
- Similar limitations as mentioned for Cloud liquid water path (see Section 2.6)

Cloud ice water path - data fields and descriptions:

Product level	Data field name	Description
Level-2	cwp	Cloud water path
Level-2	cwp_uncertainty	Cloud water path uncertainty
Level-3U	cwp_asc cwp_desc	Cloud water path, ascending node of orbit Cloud water path, descending node of orbit
Level-3U	cwp_asc_unc cwp_desc_unc	Cloud water path uncertainty, ascending Cloud water path uncertainty, descending
Level-3C	iwp	Cloud ice water path, mean of individual pixel retrievals
Level-3C	iwp_unc	Cloud ice water path - mean of individual pixel uncertainties
Level-3C	iwp_std	Cloud ice water path - standard deviation of individual pixel retrievals
Level-3C	iwp_prop_unc	Cloud ice water path - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
Level-3C	iwp_corr_unc	Cloud ice water path - correlated uncertainty assuming correlation of 0.1
Level-3C	iwp_allsky	Cloud ice water path all-sky - grid box mean of individual pixel retrievals, including clear-sky pixels
Level-3C	hist1d_cwp	Cloud water path - histogram

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
272	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 27

2.8 Spectral cloud albedo

The black-sky spectral cloud albedo (CLA) describes the directional hemispherical reflectance of the cloud at the current solar zenith angle. The CLA is calculated for channel 1 (0.67 μ m) and channel 2 (0.87 μ m), respectively. This product exists on pixel level in Level-2, globally gridded but unaveraged (Level-3U) and is averaged to monthly mean cloud albedo (Level-3C). Level-3C also holds 1-dimensional histograms of the two albedos. Examples of Level-3U and Level-3C are shown in Figure 2-8.

Figure 2-8 Left: Global map of Cloud_cci L3U spectral cloud albedo at 600nm for 2008/06/22. Right: Global map of Cloud_cci monthly mean spectral cloud albedo at 600nm for 2008/06. (Both examples are taken from the AVHRR-PM dataset. Examples of all datasets are shown in Annex A)

Short algorithm approach description:

The cloud albedo is derived for each of the visible/near infrared channels. The spectral albedo is interpolated from the LUTs for the corresponding retrieved CER and COT (More details in ATBD-CC4CLv6.2).

Uncertainty information:

• The uncertainty of the cloud albedo is calculated using the derivative of the LUT with respect to COT and CER.

Known Limitations:

- CLA is a daytime product only
- The uncertainty will be high over bright/snow covered surfaces.
- Similar limitations as for COT and CER apply

Spectral cloud albedo - data fields* and descriptions:

Product level	Data field name	Description
Level-2	cloud_albedo_in_channel_no_1/2	Cloud albedo at 0.6µm/0.8µm
Level-2	cloud_albedo_uncertainty_in_channel_no_1/2	Cloud albedo at 0.6µm/0.8µm uncertainty
Level-3U	cla_vis006/008_asc cla_vis006/008_desc	Cloud albedo at 0.6µm/0.8µm, ascending node of orbit Cloud albedo at 0.6µm/0.8µm, descending node of orbit
Level-3U	cla_vis006/008_asc_unc cla_vis006/008_desc_unc	Cloud albedo at 0.6µm/0.8µm uncertainty, ascending node of orbit Cloud albedo at 0.6µm/0.8µm uncertainty, descending node of orbit
Level-3C	cla_vis006/008	Cloud albedo at 0.6µm/0.8µm - mean of individual pixel retrievals
Level-3C	cla_vis006/008_unc	Cloud albedo at 0.6µm/0.8µm - mean of individual pixel uncertainties
Level-3C	cla_vis006/008_std	Cloud albedo at 0.6µm/0.8µm - standard deviation of individual pixel retrievals
Level-3C	cla_vis006/008_liq/ice	Liquid/ice cloud albedo at 0.6µm/0.8µm - mean of individual pixel retrievals
Level-3C	cla_vis006/008_liq/ice_unc	Liquid/ice cloud albedo at 0.6µm/0.8µm - mean of individual pixel uncertainties
Level-3C	cla_vis006/008_liq/ice_std	Liquid/ice cloud albedo at 0.6µm/0.8µm - standard deviation of individual pixel retrievals
Level-3C	cla_vis006/008_prop_unc	Cloud albedo at 0.6µm/0.8µm - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
Level-3C	cla_vis006/008_corr_unc	Cloud albedo at 0.6µm/0.8µm - correlated uncertainty assuming correlation of 0.1
Level-3C	hist1d_cla_vis006/008	Cloud albedo at 0.6µm/0.8µm - histogram

		Doc:	Cloud_cci_D3.3_PUG_v5.1.do				
270	cloud	Date:				16 January 2020	
	cci	lssue:	5	Revision:	1	Page 29	

2.9 Joint cloud property histogram

The joint cloud property histogram product (JCH) is a two-dimensional histogram per grid cell and is composed of occurrences of COT-CTP combinations. The frequency is represented by absolute counts in each histogram bin. The bin definitions are given below. This product is daytime only. Figure 2-9 shows an example of JCH when aggregated globally and when shown as map of relative occurrence of a specific cloud type.

Figure 2-9 Left: JCH histogram after globally aggregated over all grid cells, and normalized by the total number. Right: Global map of relative occurrence of cumulus clouds (according to ISCCP (Rossow and Schiffer, 1999) definition: CTP>680hPa and COT<3.6) with respect to all occurring clouds. Data is for 2008/06. (Both examples are taken from the AVHRR-PM dataset. Examples of all datasets are shown in Annex A)

Short algorithm approach description:

For each daytime Level-2 pixel for which a cloud was detected and valid cloud optical thickness and cloud top pressures were retrieved, the counts of the specific COT-CTP bins is incremented (More details in ATBDv6.2).

Uncertainty information:

• No uncertainty information available for this product.

Known limitations:

- JCH is a daytime only product
- Limitation as for CTP and COT also apply to this product.

Product level	Data field name	Description
Level-2	N/A	N/A
Level-3U	N/A	N/A
Level-3C	hist2d_cot_ctp	Two-dimensional, COT-CTP histogram containing absolute counts

	Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx	
273	cloud	Date:				16 January 2020
5-5-1	cci	Issue:	5	Revision:	1	Page 30

2.10 Top of atmosphere broadband radiative flux

This product group contains following radiative fluxes at top of atmosphere (TOA):

- Downwelling shortwave (solar) broadband radiative flux at TOA (SWF^{down})
- Upwelling shortwave (solar) broadband radiative flux at TOA (SWF^{up}_{TOA})
- Upwelling longwave (thermal) broadband radiative flux at TOA (LWF_{TOA}^{up})

For the upwelling components, all-sky and clear-sky fluxes are available. All products exists on pixel level in Level-2, globally gridded but unaveraged (Level-3U) composites and as monthly mean fluxes (Level-3C) which includes already a diurnal cycle correction. Examples of Level-3U and Level-3C are shown in Figure 2-10.

Figure 2-10 Left: Global maps of Cloud_cci L3U upwelling shortwave and longwave broadband flux at top of the atmosphere (SWF_{TOA}^{up} , LWF_{TOA}^{up}) for all-sky conditions for 2008/06/22. Right: Global maps of Cloud_cci monthly mean of SWF_{TOA}^{up} and LWF_{TOA}^{up} for all-sky conditions for 2008/06. (Both examples are taken from the AVHRR-PM dataset. Examples of all datasets are shown in Annex A)

Short algorithm approach description:

Broadband radiative fluxes are computed in a post-processing step of the CC4CL using BUGSrad (Stephens et al., 2001). BUGSrad is based on the two-stream approximation and correlated-k distribution methods of atmospheric radiative transfer. The basis of the algorithm is the same as that described by Fu and Liou (1992). It is applied to a single-column atmosphere for which the cloud and aerosol layers are assumed to be plane-parallel. Cloud properties retrieved using CC4CL are ingested into BUGSrad to compute both shortwave and longwave radiative fluxes for the top and bottom of atmosphere. The algorithm uses 18 bands that span the entire electromagnetic spectrum to compute the broadband flux. In total, 6 bands are used for shortwave and 12 bands are used for longwave radiative flux calculations. In depth information about BUGSrad and its application can be found in ATBD-CC4CL-TOA_FLUXv1.1. Important to note that in twilight conditions the shortwave fluxes are based on a linear fit to measured 0.6µm reflectances.

	Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx	
270	cloud	Date:				16 January 2020
- Trail	cci	lssue:	5	Revision:	1	Page 31

Uncertainty information:

• No direct uncertainty information available. However, the TOA fluxes have been evaluated by comparisons to CERES data (see PVIRv6).

Known Limitations:

- Often the monthly mean flux calculations are based on one or two observations a day, thus based on coarse temporal sampling. However, a diurnal cycle correction is implemented to limit corresponding uncertainty when generating monthly means.
- In particular for the long-wave fluxes, a fair amount of ERA-Interim data is incorporated in the flux calculation.
- Shortwave fluxes in twilight conditions are characterized by higher uncertainties.

Product level	Data field name	Description
Level-2	toa_lwup	top of atmosphere upwelling longwave radiation, all-sky
	toa_lwup_clr	top of atmosphere upwelling longwave radiation, clear-sky
	toa_swup	top of atmosphere upwelling shortwave radiation, all-sky
	toa_swup_clr	top of atmosphere upwelling shortwave radiation, clear-sky
	toa_swdn	top of atmosphere downwelling shortwave radiation
Level-3U	toa_lwup_asc/desc	top of atmosphere upwelling longwave radiation ascending/descending, all-sky
	toa_lwup_clr_asc/desc	top of atmosphere upwelling longwave radiation ascending/descending, clear-sky
	toa_swup_asc/desc	top of atmosphere upwelling shortwave radiation ascending/descending, all-sky
	toa_swup_clr_asc/desc	top of atmosphere upwelling shortwave radiation ascending/descending, clear-sky
	toa_swdn_asc/desc	top of atmosphere downwelling shortwave radiation ascending/descending
Level-3C	toa_lwup	top of atmosphere upwelling longwave radiation, all-sky
	toa_lwup_clr	top of atmosphere upwelling longwave radiation, clear-sky
	toa_swup	top of atmosphere upwelling shortwave radiation, all-sky

TOA broadband radiative fluxes - data fields* and descriptions:

	(Doc:	Cloud_cci_D3.3_PUG_v5.1.doc				
273	cloud	Date:				16 January 2020	
	cci	lssue:	5	Revision:	1	Page 32	

toa_swup_clr toa_swdn	top of atmosphere upwelling shortwave radiation, clear-sky
- toa lwup low	top of atmosphere downwelling shortwave radiation
tog lwup mid	top of atmosphere upwelling longwave radiation, all-sky + low clouds
tog lwup hig	top of atmosphere upwelling longwave radiation, all-sky + mid-level clouds
tog swup low	top of atmosphere upwelling longwave radiation, all-sky + high clouds
tog swup_iow	top of atmosphere upwelling shortwave radiation, all-sky + low clouds
toa_swup_mia	top of atmosphere upwelling shortwave radiation, all-sky + mid-level clouds
ioa_swup_nig	top of atmosphere upwelling shortwave radiation, all-sky + high clouds

	Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx	
273	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 33

2.11 Bottom of atmosphere broadband radiative flux

This product group contains following radiative fluxes at the surface (bottom of atmosphere, BOA):

- Downwelling shortwave (solar) broadband radiative flux at BOA (SWF_{BOA}^{down})
- Downwelling longwave (thermal) broadband radiative flux at BOA (${\rm LWF}_{\rm BOA}^{\rm down}$)
- Upwelling shortwave (solar) broadband radiative flux at BOA (SWF^{up}_{BOA})
- Upwelling longwave (thermal) broadband radiative flux at BOA (LWF^{up}_{BOA})
- Diffuse downwelling photosynthetic radiative flux at BOA (diffusePAR^{down})
- Total downwelling photosynthetic radiative flux at BOA (totalPAR^{down}_{BOA})

For all components, all-sky and clear-sky fluxes are available. All products exists on pixel level in Level-2, globally gridded but unaveraged (Level-3U) composites and as monthly mean fluxes (Level-3C) which includes already a diurnal cycle correction. Examples of Level-3U and Level-3C are shown in Figure 2-11 and Figure 2-12.

Figure 2-11 Left: Global maps of Cloud_cci L3U upwelling shortwave and longwave broadband flux at top of the atmosphere (SWF^{up}_{TOA}, LWF^{up}_{TOA}) for all-sky conditions 2008/06/22. Right: Global maps of Cloud_cci monthly mean of SWF^{up}_{TOA} and LWF^{up}_{TOA} for all-sky conditions for 2008/06. (Both examples are taken from the AVHRR-PM dataset. Examples of all datasets are shown in Annex A)

	cloud cci	Doc:	Cloud_cci_D3.3_PUG_v5.1.docx				
		Date:					
		lssue:	5	Revision:	1	Page 34	

Figure 2-12 As Figure 2-11 but for diffuse PAR_{BOA}^{down} and total PAR_{BOA}^{down} .

Short algorithm approach description:

Broadband radiative fluxes are computed in a post-processing step of the CC4CL using BUGSrad (Stephens et al., 2001). BUGSrad is based on the two-stream approximation and correlated-k distribution methods of atmospheric radiative transfer. The basis of the algorithm is the same as that described by Fu and Liou (1992). It is applied to a single-column atmosphere for which the cloud and aerosol layers are assumed to be plane-parallel. Cloud properties retrieved using CC4CL are ingested into BUGSrad to compute both shortwave and longwave radiative fluxes for the top and bottom of atmosphere. The algorithm uses 18 bands that span the entire electromagnetic spectrum to compute the broadband flux. In total, 6 bands are used for shortwave and 12 bands are used for longwave radiative flux calculations. In depth information about BUGSrad and its application can be found in ATBD-CC4CL-TOA_FLUXv1.1. Important to note that in twilight conditions the shortwave fluxes are based on a linear fit to measured 0.6µm reflectances.

Uncertainty information:

• No direct uncertainty information available. However, the BOA fluxes have been evaluated by comparisons to BSRN and SURFRAD data (see PVIRv6 and ATBD-CC4CL_TOA_FLUXv1.1).

Known Limitations:

- Often the monthly mean flux calculations are based on one or two observations a day, thus based on coarse temporal sampling. However, a diurnal cycle correction is implemented to limit corresponding uncertainty when generating monthly means.
- In particular for the long-wave fluxes, a fair amount of ERA-Interim data is incorporated in the flux calculation.
- PAR is not included in the ATSR2-AATSR dataset.
- Shortwave fluxes in twilight conditions are characterized by higher uncertainties.

	cloud cci	Doc:	Cloud_cci_D3.3_PUG_v5.1.docx				
		Date:	16 January 2020				
		Issue:	5	Revision:	1	Page 35	

TOA broadband radiative fluxes - data fields* and descriptions:

Product level	Data field name	Description
Level-2	boa_lwdn	bottom of atmosphere downwelling longwave radiation, all-sky
	boa_lwdn_clr	bottom of atmosphere downwelling longwave radiation, clear-sky
	boa_swdn	bottom of atmosphere downwelling shortwave radiation, all-sky
	boa_swdn_clr	bottom of atmosphere downwelling shortwave radiation, clear-sky
	boa_lwup	bottom of atmosphere upwelling longwave radiation, all-sky
	boa_lwup_clr	bottom of atmosphere upwelling longwave radiation, clear-sky
	boa_swup	bottom of atmosphere upwelling shortwave radiation, all-sky
	boa_swup_clr	bottom of atmosphere upwelling shortwave radiation, clear-sky
	boa_par_dif	bottom of atmosphere diffuse downwelling photosynthetic radiative flux
	boa_par_tot	bottom of atmosphere total downwelling photosynthetic radiative flux
Level-3U	boa_lwdn_asc/desc	bottom of atmosphere downwelling longwave radiation asc./desc., all-sky
	boa_lwdn_clr_asc/desc	bottom of atmosphere downwelling longwave radiation asc./desc., clear-sky
	boa_swdn_asc/desc	bottom of atmosphere downwelling shortwave radiation asc./desc., all-sky
	boa_swdn_clr_asc/desc	bottom of atmosphere downwelling shortwave radiation asc./desc., clear-sky
	boa_lwup_asc/desc	bottom of atmosphere upwelling longwave radiation asc./desc., all-sky
	boa_lwup_clr_asc/desc	bottom of atmosphere upwelling longwave radiation asc./desc., clear-sky
	boa_swup_asc/desc	bottom of atmosphere upwelling shortwave radiation asc./desc., all-sky
	boa_swup_clr_asc/desc	bottom of atmosphere upwelling shortwave radiation asc./desc., clear-sky
	boa_par_dif_asc/desc	bottom of atmosphere diffuse downwelling photosynthetic radiative flux asc./desc.
	boa_par_tot_asc/desc	bottom of atmosphere total downwelling photosynthetic radiative flux asc./desc.

	cloud cci	Doc:	Cloud_cci_D3.3_PUG_v5.1.docx				
		Date:	16 January 2020				
		lssue:	5	Revision:	1	Page 36	

Level-3C	boa_lwdn	bottom of atmosphere downwelling longwave radiation, all-sky
	boa_lwdn_clr	bottom of atmosphere downwelling longwave radiation, clear-sky
	boa_swdn	bottom of atmosphere downwelling shortwave radiation, all-sky
	boa_swdn_clr	bottom of atmosphere downwelling shortwave radiation, clear-sky
	boa_lwup	bottom of atmosphere upwelling longwave radiation, all-sky
	boa_lwup_clr	bottom of atmosphere upwelling longwave radiation, clear-sky
	boa_swup	bottom of atmosphere upwelling shortwave radiation, all-sky
	boa_swup_clr	bottom of atmosphere upwelling shortwave radiation, clear-sky
	boa_par_dif	bottom of atmosphere diffuse downwelling photosynthetic radiative flux
	boa_par_tot	bottom of atmosphere total downwelling photosynthetic radiative flux

3. Data format description

3.1 File names and vocabulary

According to Data Standards Requirements for CCI Data Producers (DSRDPv2.1) following filename convention is applied. Example filename:

<Indicative Date>[<Indicative Time>]-ESACCI-<Processing Level>_<CCI Project>-<Data Type>-<Product String>[-<Additional Segregator>][-v<GDS version>]-fv<File version>.nc

 Table 3-1 Components of Cloud_cci file names and possible assignments.

Field name field	Description
<indicative date=""></indicative>	The identifying date for this data set. Format is YYYY[MM[DD]], where YYYY is the four digit year, MM is the two digit month from 01 to 12 and DD is the two digit day of the month from 01 to 31. The date used should best represent the observation date for the data set. It can be a year, a year and a month or a year and a month and a day.
<indicative time=""></indicative>	The identifying time for this data set in UTC. Format is [HH[MM[SS]]] where HH is the two digit hour from 00 to 23, MM is the two digit minute from 00 to 59 and SS is the two digit second from 00 to 59.
<processing level=""></processing>	Possible assignments: L2, L3U, L3C, L3S. See Table 1-3 for description.
<cci project=""></cci>	CLOUD
<data type=""></data>	CLD_PRODUCTS (standard, all cloud properties are included in this file. For file with only one or a subset of the cloud properties, the Data Type is e.g. COT, CTP, CFC etc.)
<product string=""></product>	The Product String gives information about the sensor(s) and platform(s) used. It therefore depends on the processing levels: L2P, L3U and L3C: Product string is SENSOR_PLATFORM Examples: AVHRR_NOAA18, MODIS_AQUA, AATSR_ENVISAT L3S: Product string is SENSOR_MERGED Examples: AVHRR_MERGED, MODIS_MERGED
v <gds version=""></gds>	not used in Cloud_cci
fv <file version=""></file>	File version number in the form $n{1,}[.n{1,}]$ (That is 1 or more digits followed by optional . and another 1 or more digits.)

3.2 Data format

Cloud_cci products are provided as NetCDF (Network Common Data Format) files (<u>http://www.unidata.ucar.edu/software/netcdf/</u>). The data files are created following NetCDF

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
273	cloud	Date:				16 January 2020
	cci	Issue:	5	Revision:	1	Page 38

Climate and Forecast (CF) Metadata Convention version 1.6 (<u>http://cf-pcmdi.llnl.gov/</u>) and NetCDF Attribute Convention for Dataset Discovery (ACDD) version 1.3.

A common NetCDF file consists of dimensions, variables, and attributes. These components can be used together to capture the meaning of data and relations among data. All Cloud_cci products files are built following the same design principles. All files contain general variables, which are common for all files, and product specific variables. Dimension of all two-dimensional fields are named *lon*, *lat*. For the Histograms, additional three dimensions for COT and CTP and Phase bins are included. General variables of each file are *time*, *latitude*, and *longitude* (see below).

Each variable and data fields have associated attributes which are listed in Table 3-2. Global attributes contain in each of the data files are given in

Table 3-3.

Name	Description
long_name	long descriptive name
standard_name	standard name that references a description of a variable's content in the CF standard name table
units	physical unit [udunits standards]
valid_min	smallest valid value of a variable
valid_max	largest valid value of a variable
scale_factor	The data are to be multiplied by this factor after it is read.
add_offset	This number is to be added to the data after it is read. If scale_factor is present, the data are first scaled before the offset is added.
_FillValue	This number represents missing or undefined data. Missing values are to be filtered before scaling.
missing	same as _FillValue

Table 3-2 Attributes assigned to variables in NetCDF.

General variables

Name	Description
time	start of averaging/composite time period [Julian Date, days elapsed since 1970-01-01 00:00:00]
lat	geographical latitude of grid-box centre [degree_north]
lon	geographical longitude of grid-box centre [degree_east]

Note, the L2 files contain two-dimensional latitude and longitude fields.

	cloud	Doc:	Cloud_cci_D3.3_PUG_v5.1				
273		Date:	16 January 202			16 January 2020	
	cci	lssue:	5	Revision:	1	Page 39	

 Table 3-3 Overview of global attributes of NetCDF files of Cloud_cci cloud products and possible corresponding values.

Name	Description
title	Title of the product. (e.g. ESA Cloud_cci L2 product)
institution	Institution on which the data and file was processed. E.g. Deutscher Wetterdienst (DWD), Rutherford Appleton Laboratory (RAL), Freie Universität Berlin (FUB)
source	Satellite sensor(s) of which the measurements were used to create the presented data. E.g. AVHRR-GAC, AATSR
history	Date and time the file was generated and optional information on product generation. E.g. 2011-02-14 12:22:43 - Product generated from CC4CL single view v2.0
references	Web link to reference information (e.g. http://www.esa-cloud-cci.org/)
tracking_id	Universally Unique Identifier (UUID) generated using OSSP (http://www.ossp.org/pkg/lib/uuid/)(format example: 0c9e9570 cd44102f80010050c28e1010)
conventions	NetCDF Climate and Forecast (CF) Metadata Convention 1.6
product_version	Version of product. E.g. 1.0
summary	Summary of the products contained. E.g. This dataset contains Level-3 (monthly) global cloud property products from satellite observations. Level 3 data are raw observations processed to geophysical quantities, and averaged onto a regular grid.
keywords	Specific Cloud_cci keywords. E.g. satellite, observations, cloud properties.
id	filename.nc
naming authority	optional
keywords_vocabolary	optional
cdm_data_type	optional
comment	"These data were produced at ESACCI as part of the ESA CLOUD_CCI project."
date_created	Data and time the file was created. E.g. yyyymmddThhmmssZ
creator_name	Name of the creator (members of the Cloud_cci consortium) of the file/product. E.g. Deutscher Wetterdienst (DWD), Rutherford Appleton Laboratory (RAL), Freie Universität Berlin (FUB)
creator_url	Url of creator. E.g. <u>http://www.esa-cloud-cci.org</u>
creator_email	contact.cloudcci@dwd.de
project	Climate Change Initiative European Space Agency

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
273	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 40

Name	Description
geospatial_lat_min	Minimum latitude of data fields
geospatial_lat_max	Maximum latitude of data fields
geospatial_lon_min	Minimum longitude of data fields
geospatial_lon_max	Maximum longitude of data fields
geospatial_lat_units	Unit of latitude data. E.g. degrees_north
geospatial_lon_units	Unit of longitude data. E.g. degrees_east
geospatial_vertical_min	N/A
geospatial_vertical_max	N/A
spatial_resolution	Spatial resolution of products (See Section 1.3, Table 1-3 of PUG for more details)
time_coverage_start	Start time of temporal coverage of data. E.g.: yyyymmddThhmmssZ
time_coverage_end	End time of temporal coverage of data. E.g.: yyyymmddThhmmssZ
time_coverage_duration	Total temporal coverage of data. E.g. P1M for monthly files
time_coverage_resolution	Temporal resolution of data. E.g. P1D for daily files
standard_name_vocabulary	e.g. NetCDF Climate and Forecast (CF) Metadata Convention version 1.6
license	ESA CCI Data Policy: free and open access
platform	Platform(s) of sensors used. E.g. Envisat, NOAA-18, AQUA, TERRA
sensor	Sensors used to generate contained data. E.g. AATSR, AVHRR

4. Data access, citation, acknowledgement, user support

4.1 Data access

Cloud_cci datasets can be access via the Cloud_cci website:

http://www.esa-cloud-cci.org/?q=data_download or via the CCI Open Data Portal:

http://cci.esa.int or via the CCI Toolbox (being released in the near future).

Special data requests can be sent to: contact.cloudcci@dwd.de

4.2 User support

Basic user services are provided through the Cloud_cci homepage <u>www.esa-cloud-cci.org</u>. The user service includes information and documentation about the Cloud_cci project and the Cloud_cci products, information on how to contact the user help desk and allows searching the product catalogue. A specific support section can be found under:

http://www.esa-cloud-cci.org/?q=contact

4.3 Terms and conditions for use of Cloud_cci data

The Cloud_cci datasets may be used by any user for any purpose, with the following terms and conditions:

- 1) Users of the CCI data are required to acknowledge the ESA Climate Change Initiative and Cloud_cci together with the individual data providers if the data are used in a presentation or publication. Please also cite any relevant dataset DOIs (see example citation text below).
- 2) Users of the CCI data are encouraged to interact with the CCI programme on use of the products, and to provide a copy of all reports and publications using the dataset. An offer of co-authorship should be considered, if the CCI data constitute a major component of a scientific publication.
- 3) Intellectual property rights (IPR) in the CCI data lie with the researchers and organisations producing the data.
- 4) Liability: No warranty is given as to the quality or the accuracy of the CCI data or its suitability for any use. All implied conditions relating to the quality or suitability of the information, and all liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.

4.4 Citation

Citing the scientific content of the AVHRR datasets:

Stengel, M., Stapelberg, S., Sus, O., Finkensieper, S., Würzler, B., Philipp, D., Hollmann, R., Poulsen, C., Christensen, M., and McGarragh, G.: Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties, Earth Syst. Sci. Data, 12, 41-60, https://doi.org/10.5194/essd-12-41-2020, 2020.

Citing the scientific content of the ATSR2-AATSR dataset:

Poulsen, C. A., Mcgarragh, G. R., Thomas, G. E., Stengel, M., Christiensen, M. W., Povey, A. C., Proud, S. R., Carboni, E., Hollmann, R., and Grainger, R. G.: Cloud_cci ATSR-2 and AATSR dataset version 3: a 17-yearclimatology of global cloud and radiation properties, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-217, in review, 2019.

Citing the dataset DOIs:

Cloud_cci AVHRR-AMv3:

Stengel, Martin; Sus, Oliver; Stapelberg, Stefan; Finkensieper, Stephan; Würzler, Benjamin; Philipp, Daniel; Hollmann, Rainer; Poulsen, Caroline (2019): ESA Cloud Climate Change Initiative (ESA Cloud_cci) data: Cloud_cci AVHRR-AM L3C/L3U CLD_PRODUCTS v3.0, Deutscher Wetterdienst (DWD), DOI:10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V003

<u>Cloud_cci AVHRR-PMv3</u>:

Stengel, Martin; Sus, Oliver; Stapelberg, Stefan; Finkensieper, Stephan; Würzler, Benjamin; Philipp, Daniel; Hollmann, Rainer; Poulsen, Caroline (2019): ESA Cloud Climate Change Initiative (ESA Cloud_cci) data: Cloud_cci AVHRR-PM L3C/L3U CLD_PRODUCTS v3.0, Deutscher Wetterdienst (DWD), DOI:10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003

Cloud_cci ATSR2-AATSRv3:

Poulsen, Caroline; McGarragh, Greg; Thomas, Gareth; Stengel, Martin; Christensen, Matthew; Povey, Adam; Proud, Simon; Carboni, Elisa; Hollmann, Rainer; Grainger, Don (2019): ESA Cloud Climate Change Initiative (ESA Cloud_cci) data: Cloud_cci ATSR2-AATSR L3C/L3U CLD_PRODUCTS v3.0, Deutscher Wetterdienst (DWD) and Rutherford Appleton Laboratory (Dataset Producer), DOI:10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V003

4.5 Feedback

Users of Cloud_cci products and services are encouraged to provide feedback on the Cloud_cci product and services to the Cloud_cci team. For this, users should contact the User Help Desk.

http://www.esa-cloud-cci.org/?q=contact

4.6 **Re-distribution of Cloud_cci data**

Please do not re-distribute Cloud_cci data to 3rd parties. The use of the Cloud_cci products is granted free of charge to every interested user, but there is an essential interest to know how many and what users Cloud_cci has.

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
270	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 43

5. Glossary

ACDD	Attribute Convention for Dataset Discovery
AATSR	Advanced Along Track Scanning Radiometer
ATBD	Algorithm Theoretical Baseline Document
ATSR2	Along-Track Scanning Radiometer 2
AVHRR	Advanced Very High Resolution Radiometer
BRDF	Bidirectional Reflectance Distribution Function
CALIOP	Cloud-Aerosol Lidar with Orthogonal Polarization
CC4CL	Community Cloud retrieval for Climate
CCI	Climate Change Initiative
CER	Cloud Effective Radius
CF	Climate and Forecast
CFC	Cloud Fractional Coverage
CFMIP	Cloud Feedback Model Intercomparison Project
CLA	Spectral Cloud Albedo
CMA	Cloud Mask
COSP	CFMIP Observation Simulator Package
СРН	Cloud Phase
СОТ	Cloud Optical Thickness
СТН	Cloud Top Height
СТР	Cloud Top Pressure
СТТ	Cloud Top Temperature
CWP	Cloud Water Path
DCHP-A	Daytime Cloud Height Property AATSR

cloud	Doc:	Cloud_cci_D3.3_PUG_v				
	Date:	16 January 2				
 cci	lssue:	5	Revision:	1	Page 44	

DCHP-M	Daytime Cloud Height Property MERIS
DOI	Digital Object Identifier
DSRDP	Data Standards Requirements for CCI Data
DWD	Deutscher Wetterdienst
ECV	Essential Climate Variable
ENVISAT	Environmental Satellite
ESA	European Space Agency
FAME-C	FUB AATSR MERIS Cloud retrieval algorithm
FUB	Freie Universität Berlin
FCDR	Fundamental Climate Data Record
GAC	Global Area Coverage - globally available AVHRR dataset with reduced resolution (4 km).
JCH	Joint Cloud property Histogram
ISCCP	International Satellite Cloud Climatology Project
IWP	Ice Water Path
LUT	Look-up Table
LWP	Liquid Water Path
MERIS	Medium Resolution Imaging Spectrometer
Metop	Meteorological Operational Satellite
MODIS	Moderate Resolution Imaging Spectroradiometer
NOAA	National Oceanic & Atmospheric Administration
OE	Optimal Estimation
PUG	Product User Guide
PVIR	Product Validation and Intercomparison Report
RAL	Rutherford Appleton Laboratory

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
270	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 45

6. References

ATBDv5.1, Algorithm Theoretical Baseline Document (ATBD) - ESA Cloud_cci, Issue 5, Revision: 1, date of Issue: 12/09/2017, Available at: <u>http://www.esa-cloud-cci.org/?q=documentation</u>

ATBDv6.2, Algorithm Theoretical Baseline Document (ATBD) - ESA Cloud_cci, Issue 6, Revision: 2, date of issue: 14/10/2019, Available at: <u>http://www.esa-cloud-cci.org/?q=documentation_v3</u>

ATBD-FAME-Cv5, Algorithm Theoretical Baseline Document (ATBD) FAME-C - ESA Cloud_cci, Issue 5, Revision: 0, date of Issue: 12/09/2017, Available at: <u>http://www.esa-cloud-cci.org/?q=documentation</u>

ATBD-CC4CLv5, Algorithm Theoretical Baseline Document (ATBD) CC4CL - ESA Cloud_cci, Issue 5, Revision: 0, date of Issue: 12/09/2017, Available at: <u>http://www.esa-cloud-cci.org/?g=documentation</u>

ATBD-CC4CLv6.2, Algorithm Theoretical Baseline Document (ATBD) CC4CL - ESA Cloud_cci, Issue 6, Revision: 1, date of Issue: 18/10/2019, Available at: <u>http://www.esa-cloud-cci.org/?q=documentation_v3</u>

ATBD-CC4CL_TOA_FLUXv1.1, Algorithm Theoretical Basis Document (ATBD) of the Community Code for CLimate (CC4CL) Broadband Radiative Flux Retrieval (CC4CL-TOAFLUX) - ESA Cloud_cci, Issue 1, Revision: 1, date of Issue: 14/10/2019, Available at: <u>http://www.esa-cloud-cci.org/?g=documentation</u>

CARv3, Climate Assessment Report (CAR) - ESA Cloud_cci, Issue 3, Revision: 1, date of Issue: 18/09/2017, Available at: <u>http://www.esa-cloud-cci.org/?q=documentation</u>

Bodas-Salcedo, A., Webb, M.J., Bony, S., Chepfer, H., Dufresne, J.L., Klein, S.A., Zhang, Y., Marchand, R., Haynes, J.M., Pincus, R. and John, V.O., **2011**. COSP: Satellite simulation software for model assessment. Bulletin of the American Meteorological Society, 92(8), p.1023.

CECRv3, Comprehensive Error Characterization Report (CECR) - ESA Cloud_cci, Issue 3, Revision: 1, Date of Issue: 07/03/2017, Available at: <u>http://www.esa-cloud-cci.org/?q=documentation</u>

DSRDPv2.1, Data Standards Requirements for CCI Data Producers, Issue 1, Revision 2, 2015, Prepared by ESA Climate Office, Reference CCI-PRGM-EOPS-TN-13-0009, Date of Issue: 09/03/2015, Accessible via: http://cci.esa.int/sites/default/files/CCI_Data_Requirements_Iss1.2_Mar2015.pdf

Bodas-Salcedo, A., Webb, M.J., Bony, S., Chepfer, H., Dufresne, J.L., Klein, S.A., Zhang, Y., Marchand, R., Haynes, J.M., Pincus, R. and John, V.O., **2011**. COSP: Satellite simulation software for model assessment. Bulletin of the American Meteorological Society, 92(8), p.1023.

Carbajal Henken, C.K., Lindstrot, R., Preusker, R. and Fischer, J.: FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations. Atmos. Meas. Tech., 7, 3873-3890, doi:10.5194/amt-7-3873-2014, **2014**

Eliasson, S., Karlsson, K. G., van Meijgaard, E., Meirink, J. F., Stengel, M., and Willén, U.: The Cloud_cci simulator v1.0 for the Cloud_cci climate data record and its application to a global and a regional climate model, Geosci. Model Dev., 12, 829-847, https://doi.org/10.5194/gmd-12-829-2019, 2019.

Feofilov, A. G., C. J. Stubenrauch, S. Protopapadaki, and R. Armante, **2017**: Diurnal variation of highlevel clouds from a synergy of the space-borne infrared sounders AIRS and IASI: detection and radiative effects. In preparation for submission to ACPD.

Fu, Q. and Liou, K. N. (1992). On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49:2153-2170.

Heymsfield, A.J., Matrosov, S. and Baum, B., **2003**. Ice water path-optical depth relationships for cirrus and deep stratiform ice cloud layers. Journal of Applied Meteorology, 42(10), pp.1369-1390.

		Doc:	Cloud_cci_D3.3_PUG_v5.1.doc				
2722	cloud	Date:				16 January 2020	
	cci	lssue:	5	Revision:	1	Page 46	

Hollmann, R., Merchant, C.J., Saunders, R., Downy, C., Buchwitz, M., Cazenave, A., Chuvieco, E., Defourny, P., de Leeuw, G., Forsberg, R. and Holzer-Popp, T., **2013**. The ESA climate change initiative: Satellite data records for essential climate variables. Bulletin of the American Meteorological Society, 94(10), pp.1541-1552.

Hollstein, A., Fischer, J., Carbajal Henken, C., and Preusker, R.: Bayesian cloud detection for MERIS, AATSR, and their combination, Atmos. Meas. Tech., 8, 1757-1771, doi:10.5194/amt-8-1757-2015, 2015.

McGarragh, G. R., Poulsen, C. A., Thomas, G. E., Povey, A. C., Sus, O., Stapelberg, S., Schlundt, C., Proud, S., Christensen, M. W., Stengel, M., Hollmann, R., and Grainger, R. G.: The Community Cloud retrieval for CLimate (CC4CL) - Part 2: The optimal estimation approach, Atmos. Meas. Tech., 11, 3397-3431, https://doi.org/10.5194/amt-11-3397-2018, **2018**.

Pavolonis, M. J., Heidinger, A. K., & Uttal, T. (**2005**). Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons. Journal of Applied Meteorology, 44(6), 804-826.

RAFCDRv1.0, Technical Report on AVHRR GAC FCDR generation - ESA Cloud_cci, Issue 1, Revision: 0, date of Issue: 10/05/2017. Available at: <u>http://www.esa-cloud-cci.org/?q=documentation</u>

RODCv1.1, Report on Orbital Drift Correction for AVHRR - ESA Cloud_cci, Issue 1, Revision: 1, date of Issue: 28/08/2017. Available at: <u>http://www.esa-cloud-cci.org/?q=documentation</u>

Rossow, William B., and Robert A. Schiffer. "Advances in understanding clouds from ISCCP." *Bulletin of the American Meteorological Society* 80, no. 11 (1999): 2261.

PUGv4.0, Product User Guide (PUG) - ESA Cloud_cci, Issue 4, Revision: 0, Date of Issue: 06/03/2018, Available at: <u>http://www.esa-cloud-cci.org/?q=documentation</u>

PVIRv5.1, Product Validation and Intercomparison Report (PVIR) - ESA Cloud_cci, Issue 5, Revision: 1, Date of Issue: 06/05/2018, Available at: <u>http://www.esa-cloud-cci.org/?q=documentation</u>

PVIRv6.1, Product Validation and Intercomparison Report (PVIR) - ESA Cloud_cci, Issue 6, Revision: 1, Date of Issue: Jan/2020, Available at: <u>http://www.esa-cloud-cci.org/?q=documentation_v3</u>

Sus, O., Stengel, M., Stapelberg, S., McGarragh, G., Poulsen, C., Povey, A. C., Schlundt, C., Thomas, G., Christensen, M., Proud, S., Jerg, M., Grainger, R., and Hollmann, R.: The Community Cloud retrieval for CLimate (CC4CL) - Part 1: A framework applied to multiple satellite imaging sensors, Atmos. Meas. Tech., 11, 3373-3396, https://doi.org/10.5194/amt-11-3373-2018, **2018**.

Stengel, M., Stapelberg, S., Sus, O., Schlundt, C., Poulsen, C., Thomas, G., Christensen, M., Carbajal Henken, C., Preusker, R., Fischer, J., Devasthale, A., Willén, U., Karlsson, K.-G., McGarragh, G. R., Proud, S., Povey, A. C., Grainger, R. G., Meirink, J. F., Feofilov, A., Bennartz, R., Bojanowski, J. S., and Hollmann, R.: Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project, Earth Syst. Sci. Data, 9, 881-904, https://doi.org/10.5194/essd-9-881-2017, **2017**.

Stengel, M., Schlundt, C., Stapelberg, S., Sus, O., Eliasson, S., Willén, U., and Meirink, J. F.: Comparing ERA-Interim clouds with satellite observations using a simplified satellite simulator, Atmos. Chem. Phys., 18, 17601-17614, https://doi.org/10.5194/acp-18-17601-2018, **2018**.

Stengel, M., Stapelberg, S., Sus, O., Finkensieper, S., Würzler, B., Philipp, D., Hollmann, R., Poulsen, C., Christensen, M., and McGarragh, G.: Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties, Earth Syst. Sci. Data, 12, 41-60, https://doi.org/10.5194/essd-12-41-2020, **2020**.

Stephens, G. (**1978**). Radiation profiles in extended water clouds. II: Parameterization schemes. Journal of the Atmospheric Sciences, 35, 2123-2132.

Stephens, G. L., Gabriel, P. M., and Partain, P. T. (**2001**). Parameterization of Atmospheric Radiative Transfer. Part I: Validity of Simple Models. Journal of the Atmospheric Sciences, 58(22):3391-3409.

	Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx		
	cloud	Date:		16 January 2020			
	cci	lssue:	5	Revision:	1	Page 47	

Stubenrauch, C. J., A. G. Feofilov, S. E. Protopapadaki, R. Armante, **2017**: Cloud climatologies from the InfraRed Sounders AIRS and IASI: Strengths, Weaknesses and Applications In preparation for submission to ACPD

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
273	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 48

Annex A - More examples of Cloud_cci v3 datasets

A.1 AVHRR-AMv3

Figure A-1 Level-3U (a, c, e, g) and Level-3C (b, d, f, h) of cloud mask/fraction (a-b), cloud phase/liquid cloud fraction (c-d), optical thickness (e-f) and effective radius (g-h) for the AVHRR-AMv3 dataset for June 2008 (2008/06/22 for L3U). For the Level-3U examples, the descending nodes of the orbits are shown, which roughly correspond to the daylight portions of the orbits of Metop-A. COT, LWP, IWP and CLA are only shown during daytime conditions. Areas with no valid retrievals in this day/month are grey-shaded.

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
273	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 49

Figure A-2 AVHRR-AMv3 cloud-top pressure (a-b), liquid water path (c-d), ice water path (e-f), and spectral cloud albedo at 0.6 µm (g-h) for Level-3U (a, c, e, g) and Level-3C (b, d, f, h) products. Panels (c) and (e) both show the Level-3U cloud water path, which represents liquid water path in liquid cloud pixels and ice water path in ice cloud pixels. Data is for June 2008 (2008/06/22 for L3U).

		Doc:	Cloud_cci_D3.3_PUG_v5.1.d					
2700	cloud	Date:						
	cci	lssue:	5	Revision:	1	Page 50		

Figure A-3 AVHRR-AMv3 upwelling shortwave flux at TOA (a-b), upwelling longwave flux at TOA (c-d), downwelling shortwave flux at BOA (e-f), and downwelling longwave flux at BOA (g-h) for Level-3U (a, c, e, g) and Level-3C (b, d, f, h) products. Data is for June 2008 (2008/06/22 for L3U). Panels (i-l) show equivalent data for diffuse and total downwelling photosynthetic radiative flux at BOA.

0	Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
C	Date:				16 January 2020
ŀ	ssue:	5	Revision:	1	Page 51

A.2 AVHRR-PMv3

Figure A-4 Level-3U (a, c, e, g) and Level-3C (b, d, f, h) of cloud mask/fraction (a-b), cloud phase/liquid cloud fraction (c-d), optical thickness (e-f) and effective radius (g-h) for the AVHRR-PMv3 dataset for June 2008 (2008/06/22 for L3U). For the Level-3U examples, the descending nodes of the orbits are shown, which roughly correspond to the daylight portions of the orbits of Metop-A. COT, LWP, IWP and CLA are only shown during daytime conditions. Areas with no valid retrievals in this day/month are grey-shaded.

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
270	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 52

Figure A-5 AVHRR-PMv3 cloud-top pressure (a-b), liquid water path (c-d), ice water path (e-f), and spectral cloud albedo at 0.6 µm (g-h) for Level-3U (a, c, e, g) and Level-3C (b, d, f, h) products. Panels (c) and (e) both show the Level-3U cloud water path, which represents liquid water path in liquid cloud pixels and ice water path in ice cloud pixels. Data is for June 2008 (2008/06/22 for L3U).

		Doc:	Cloud_cci_D3.3_PUG_v5.1.dc					
273	cloud	Date:	16 January 2020					
	cci	Issue:	5	Revision:	1	Page 53		

Figure A-6 AVHRR-PMv3 upwelling shortwave flux at TOA (a-b), upwelling longwave flux at TOA (c-d), downwelling shortwave flux at BOA (e-f), and downwelling longwave flux at BOA (g-h) for Level-3U (a, c, e, g) and Level-3C (b, d, f, h) products. Data is for June 2008 (2008/06/22 for L3U). Panels (i-l) show equivalent data for diffuse and total downwelling photosynthetic radiative flux at BOA.

A.3 ATSR2-AATSRv2

Figure A-7 Level-3U (a, c, e, g) and Level-3C (b, d, f, h) of cloud mask/fraction (a-b), cloud phase/liquid cloud fraction (c-d), optical thickness (e-f) and effective radius (g-h) for the **ATSR2**-**AATSRv3** dataset for June 2008 (2008/06/22 for L3U). For the Level-3U examples, the descending nodes of the orbits are shown, which roughly correspond to the daylight portions of the orbits of Metop-A. COT, LWP, IWP and CLA are only shown during daytime conditions. Areas with no valid retrievals in this day/month are grey-shaded.

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
270	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 55

Figure A-8 ATSR2-AATSRv3 cloud-top pressure (a-b), liquid water path (c-d), ice water path (e-f), and spectral cloud albedo at 0.6 µm (g-h) for Level-3U (a, c, e, g) and Level-3C (b, d, f, h) products. Panels (c) and (e) both show the Level-3U cloud water path, which represents liquid water path in liquid cloud pixels and ice water path in ice cloud pixels. Data is for June 2008 (2008/06/22 for L3U).

		Doc:	Cloud_cci_D3.3_PUG_v5.1.doc				
2 Pro	cloud	Date:				16 January 2020	
	cci	lssue:	5	Revision:	1	Page 56	

Figure A-9 ATSR2-AATSRv3 upwelling shortwave flux at TOA (a-b), upwelling longwave flux at TOA (c-d), downwelling shortwave flux at BOA (e-f), and downwelling longwave flux at BOA (g-h) for Level-3U (a, c, e, g) and Level-3C (b, d, f, h) products. Data is for June 2008 (2008/06/22 for L3U).

Annex B - Complete description of data fields

B.1 Level 2 and Level 3U data

Level 2 variable Dimensions: along_track, across_track	Level 3U variable	Description
	Auxiliary data fields	
satellite_zenith_view_no1	satzen_asc/desc(time, lat, lon)	Satellite zenith angle [deg]
solar_zenith_view_no1	solzen_asc/desc(time, lat, lon)	Solar zenith angle [deg]
rel_azimuth_view_no1	relazi_asc/desc(time, lat, lon)	Relative azimuth angle [deg]
illum	illum_asc/desc(time, lat, lon)	Illumination flag (1: day, 2: twilight, 3: night)
lsflag(time, lat, lon)	-	Land/sea mask (0: sea , 1: land)
lusflag	-	Land use flag
dem	-	Digital elevation model
nicemask	-	Snow/ice mask
<u>Optir</u>	nal Estimation related data fi	elds
costja	-	field containing the a priori cost
costjm	-	field containing the measurement cost
convergence	-	field containing the retrieval convergence flag with value 0 : converged, 1 : no convergence
niter	-	field containing the number of the retrieval iterations
qcflag	qcflag_asc/desc(time, lat, lon)	field containing a quality-check bit mask. With Bit 0 unused, Bits 1-5 set to 1 if state variable error out of bounds, Bit 6 set to 1 if no convergence achieved, Bit 7 set to 1 if cost too large. Bit 1=COT Bit 2=REF Bit 3=CTP Bit 4=CCT Bit 5=STEMP

		Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
273	cloud	Date:	16 January 202			
	cci	Issue:	5	Revision:	1	Page 58

Level 2 variable Dimensions: along_track, across_track	Level 3U variable	Description						
Cloud mask								
cc_total	cmask_asc/desc(time, lat, lon)	Cloud mask (0: cloud free, 1: cloudy)						
cc_total	cmask_asc/desc_unc(time, lat, lon)	Cloud mask uncertainty						
cccot_pre	<pre>cccot_asc/desc(time, lat, lon);</pre>	Native output of cloud detection (represents a pseudo CALIPSO COT)						
	Cloud phase & type							
phase	cph_asc/desc(time, lat, lon)	Cloud top thermodynamic phase (1: water cloud, 2: ice cloud)						
phase_pavolonis	cty_asc/desc(time, lat, lon)	Cloud type (0: clear,1: switched to liquid, 2: fog, 3: liquid, 4: supercooled, 5: switched to ice, 6: opaque ice, 7: cirrus, 8: overlapping, 9: probably opaque ice)						
<u>Cloud</u>	top pressure/height/tempera	ature						
ctt	<pre>ctt_asc/desc(time, lat, lon);</pre>	Cloud top temperature [K]						
ctt_uncertainty	<pre>ctt_asc/desc_unc(time, lat, lon);</pre>	Cloud top temperature uncertainty [K]						
ctt_corrected	<pre>ctt_corrected_asc/desc(time, lat, lon);</pre>	Cloud top temperature corrected [K]						
ctt_corrected_uncertainty	<pre>ctt_corrected_asc/desc_unc(time, lat, lon);</pre>	Cloud top temperature corrected uncertainty [K]						
cth	<pre>cth_asc/desc(time, lat, lon);</pre>	Cloud top height [km]						
cth_uncertainty	<pre>cth_asc/desc_unc(time, lat, lon);</pre>	Cloud top height uncertainty [km]						
cth_corrected	cth_corrected_asc/desc(time, lat, lon);	Cloud top height corrected [K km						
cth_corrected_uncertainty	cth_corrected_asc/desc_unc(time, lat, lon);	Cloud top height corrected uncertainty [km]						
ctp	<pre>ctp_asc/desc(time, lat, lon) ;</pre>	Cloud top pressure [hPa]						

	(Doc:	Cloud_cci_D3.3_PUG_v5.1.d			
272	cloud	Date:				16 January 2020
	cci	lssue:	5	Revision:	1	Page 59

Level 2 variable Dimensions: along_track, across_track	Level 3U variable	Description
ctp_uncertainty	ctp_asc/desc_unc(time, lat, lon);	Cloud top pressure uncertainty [hPa]
ctp_corrected	<pre>ctp_corrected_asc/desc(time, lat, lon);</pre>	Cloud top pressure corrected [hPa]
ctp_corrected_uncertainty	ctp_corrected_asc/desc_unc(time, lat, lon);	Cloud top pressure corrected uncertainty [hPa]
	Cloud optical thickness	
cot	<pre>cot_asc/desc(time, lat, lon)</pre>	Cloud optical thickness
cot_uncertainty	<pre>cot_asc/desc_unc(time, lat, lon)</pre>	Cloud optical thickness uncertainty
	Effective Radius	
cer	cer_asc/desc(time, lat, lon)	Cloud effective radius [µm]
cer_uncertainty	cer_asc/desc_unc(time, lat, lon)	Cloud effective radius uncertainty [µm]
	<u>Cloud water path</u>	
сwp	cwp_asc/desc(time, lat, lon)	Cloud water path [g/m2]
cwp_uncertainty	<pre>cwp_asc/desc_unc(time, lat, lon)</pre>	Cloud water path uncertainty [g/m2]
	Spectral cloud albedo	
cloud_albedo_in_channel_no_1	cla_vis006_asc/desc(time, lat, lon)	Cloud albedo at 0.6µm
cloud_albedo_uncertainty_in_ channel_no_1	cla_vis006_asc/desc_unc(time, lat, lon)	Cloud albedo at 0.6µm uncertainty
cloud_albedo_in_channel_no_2	cla_vis008_asc/desc(time, lat, lon)	Cloud albedo at 0.8µm
cloud_albedo_uncertainty_in_ channel_no_2	cla_vis008_asc/desc_unc(time, lat, lon)	Cloud albedo at 0.8µm uncertainty
cloud_albedo_in_channel_no_3	-	
cloud_albedo_uncertainty_in _channel_no_3	-	

Level 2 variable Dimensions: along_track, across_track	Level 3U variable	Description						
cloud_albedo_in_channel_no_3	-							
cloud_albedo_uncertainty_in_ channel_no_4	-							
Cloud effective emissivity								
cee_in_channel_no_4	-	Cloud effective emissivity at 3.7 µm						
cee_uncertainty_in_ channel_no_4	-	Cloud effective emissivity at 3.7 µm						
cee_in_channel_no_5	cee_asc/desc(time, lat, lon)	Cloud effective emissivity at 10.8 µm						
cee_uncertainty_in_ channel_no_5	<pre>cee_asc/desc_unc(time, lat, lon)</pre>	Cloud effective emissivity at 10.8 μm						
cee_in_channel_no_6	-	Cloud effective emissivity at 12.0 µm						
cee_uncertainty_in_ channel_no_6	-	Cloud effective emissivity at 12.0 µm						
	Surface Temperature							
stemp	stemp_asc/desc(time, lat, lon)	field containing the surface temperature in Kelvin						
stemp_uncertainty	<pre>stemp_asc/desc_unc(time, lat, lon)</pre>	field containing the uncertainty of <i>stemp</i> in Kelvin						
<u>T</u> (OA broadband radiative fluxe	<u>s</u>						
toa_lwup	toa_lwup_asc/desc(time, lat, lon)	top of atmosphere upwelling longwave radiation, all-sky						
toa_lwup_clr	toa_lwup_clr_asc/desc (time, lat, lon)	top of atmosphere upwelling longwave radiation, clear-sky						
toa_swup	toa_swup_asc/desc (time, lat, lon)	top of atmosphere upwelling shortwave radiation, all-sky						
toa_swup_clr	toa_swup_clr_asc/desc (time, lat, lon)	top of atmosphere upwelling shortwave radiation, clear-sky						

Level 2 variable Dimensions: along_track, across_track	Level 3U variable	Description
toa_swdn	toa_swdn_asc/desc (time, lat, lon)	top of atmosphere downwelling shortwave radiation
<u>B</u> (OA broadband radiative fluxe	<u>s</u>
boa_lwdn	boa_lwdn_asc/desc(time, lat, lon)	bottom of atmosphere downwelling longwave radiation, all-sky
boa_lwdn_clr	<pre>boa_lwdn_clr_asc/desc (time, lat, lon)</pre>	bottom of atmosphere downwelling longwave radiation, clear-sky
boa_swdn	boa_swdn_asc/desc (time, lat, lon)	bottom of atmosphere downwelling shortwave radiation, all-sky
boa_swdn_clr	boa_swdn_clr_asc/desc (time, lat, lon)	bottom of atmosphere downwelling shortwave radiation, clear-sky
boa_lwup	boa_lwup_asc/desc (time, lat, lon)	bottom of atmosphere upwelling longwave radiation, all-sky
boa_lwup_clr	<pre>boa_lwup_clr_asc/desc (time, lat, lon)</pre>	bottom of atmosphere upwelling longwave radiation, clear-sky
boa_swup	boa_swup_asc/desc (time, lat, lon)	bottom of atmosphere upwelling shortwave radiation, all-sky
boa_swup_clr	boa_swup_clr_asc/desc (time, lat, lon)	bottom of atmosphere upwelling shortwave radiation, clear-sky
boa_par_dif	boa_par_dif_asc/desc (time, lat, lon)	bottom of atmosphere diffuse downwelling photosynthetic radiative flux
boa_par_tot	boa_par_tot_asc/desc (time, lat, lon)	bottom of atmosphere total downwelling photosynthetic radiative flux

B.2 Level 3C

Level-3C variable Description							
Numbers/counters used for averaging							
nobs(time, lat, lon)	Total number of observations						
nobs_day(time, lat, lon)	Total number of daytime observations						
nobs_clear_day(time, lat, lon)	Number of clear-sky, daytime observations						
nobs_cloudy_day(time, lat, lon)	Number of cloudy, daytime observations						
nobs_clear_night(time, lat, lon)	Number of clear-sky, nighttime observations						
nobs_cloudy_night(time, lat, lon)	Number of cloudy, nighttime observations						
nobs_clear_twl(time, lat, lon)	Number of clear-sky, twilight observations						
nobs_cloudy_twl(time, lat, lon)	Number of cloudy, twilight observations						
nobs_cloudy(time, lat, lon)	Total number of cloudy observations						
nretr_cloudy(time, lat, lon)	Number of cloud property retrievals						
nretr_cloudy_liq(time, lat, lon)	Number of cloud property retrievals for liquid clouds						
nretr_cloudy_ice(time, lat, lon)	Number of cloud property retrievals for ice clouds						
nretr_cloudy_day(time, lat, lon)	Number of daytime cloud property retrievals						
nretr_cloudy_day_liq(time, lat, lon)	Number of daytime cloud property retrievals for liquid clouds						
nretr_cloudy_day_ice(time, lat, lon)	Number of daytime cloud property retrievals for ice clouds						
nretr_cloudy_low(time, lat, lon)	Number of cloud property retrievals for low clouds						
nretr_cloudy_mid(time, lat, lon)	Number of cloud property retrievals for mid-level clouds						
nretr_cloudy_high(time, lat, lon)	Number of cloud property retrievals for high clouds						
	Cloud fraction						
cfc(time, lat, lon)	Total cloud fraction - mean of individual pixel retrievals						
cfc_std(time, lat, lon)	Total cloud fraction - standard deviation of individual pixel retrievals						
cfc_prop_unc(time, lat, lon)	Total cloud fraction - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature						
cfc_corr_unc(time, lat, lon)	Total cloud fraction - correlated uncertainty assuming correlation of 0.1						

Doc:	Cloud_cci_D3.3_PUG_v5.1.docx							
Date:				16 January 2020				
lssue:	5	Revision:	1	Page 63				

Level-3C variable	Description
cfc_unc(time, lat, lon)	Total cloud fraction - mean of individual pixel uncertainties
cfc_low(time, lat, lon)	Portion of total cloud fraction due to low clouds
cfc_mid(time, lat, lon)	Portion of total cloud fraction due to mid-level clouds
cfc_high(time, lat, lon)	Portion of total cloud fraction due to high clouds
cfc_day(time, lat, lon)	Total cloud fraction daytime - mean of individual pixel retrievals
cfc_night(time, lat, lon)	Total cloud fraction night time - mean of individual pixel retrievals
cfc_twl(time, lat, lon)	Total cloud fraction twilight - mean of individual pixel retrievals
	Cloud phase
cph(time, lat, lon)	Liquid cloud fraction - mean of individual pixel phase retrievals
cph_std(time, lat, lon)	Liquid cloud fraction standard deviation of individual pixel phase retrievals
cph_day(time, lat, lon)	Liquid cloud fraction daytime - mean of individual pixel phase retrievals
cph_day_std(time, lat, lon)	Liquid cloud fraction daytime - standard deviation of individual pixel phase retrievals
<u>Cloud t</u>	op pressure/height/temperature
ctt(time, lat, lon)	Cloud top temperature - mean of individual pixel retrievals
ctt_std(time, lat, lon)	Cloud top temperature - standard deviation of individual pixel retrievals
<pre>ctt_prop_unc(time, lat, lon)</pre>	Cloud top temperature - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
ctt_corr_unc(time, lat, lon)	Cloud top temperature - correlated uncertainty assuming correlation of 0.1
ctt_unc(time, lat, lon)	Cloud top temperature - mean of individual pixel uncertainties
<pre>ctt_corrected(time, lat, lon)</pre>	Corrected cloud top temperature - mean of corrected individual pixel retrievals
ctt_corrected_std(time, lat, lon)	Corrected cloud top temperature - standard deviation of corrected individual pixel retrievals

	cloud	Doc:	Cloud_cci_D3.3_PUG_v5.1.				
27%		Date:	- 16 January 2020				
	cci	lssue:	5	Revision:	1	Page 64	

Level-3C variable	Description
ctt_corrected_prop_unc(time, lat, lon)	Corrected cloud top temperature - propagated uncertainty: total uncertainty from corrected individual pixel uncertainty added in quadrature
ctt_corrected_corr_unc(time, lat, lon)	Corrected cloud top temperature - correlated uncertainty assuming correlation of 0.1
ctt_corrected_unc(time, lat, lon)	Corrected cloud top temperature - mean of corrected individual pixel uncertainties
cth(time, lat, lon)	Cloud top height - mean of individual pixel retrievals
cth_std(time, lat, lon)	Cloud top height - standard deviation of individual pixel retrievals
cth_prop_unc(time, lat, lon)	Cloud top height - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
cth_corr_unc(time, lat, lon)	Cloud top height - correlated uncertainty assuming correlation of 0.1
cth_unc(time, lat, lon)	Cloud top height - mean of individual pixel uncertainties
cth_corrected(time, lat, lon)	Corrected cloud top height - mean of corrected individual pixel retrievals
cth_corrected_std(time, lat, lon)	Corrected cloud top height - standard deviation of corrected individual pixel retrievals
cth_corrected_prop_unc(time, lat, lon)	Corrected cloud top height - propagated uncertainty: total uncertainty from corrected individual pixel uncertainty added in quadrature
cth_corrected_corr_unc(time, lat, lon)	Corrected cloud top height - correlated uncertainty assuming correlation of 0.1
cth_corrected_unc(time, lat, lon)	Corrected cloud top height - mean of corrected individual pixel uncertainties
ctp(time, lat, lon)	Cloud top pressure - mean of individual pixel retrievals
ctp_std(time, lat, lon)	Cloud top pressure - standard deviation of individual pixel retrievals
ctp_prop_unc(time, lat, lon)	Cloud top pressure - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
ctp_corr_unc(time, lat, lon)	Cloud top pressure - correlated uncertainty assuming correlation of 0.1
ctp_unc(time, lat, lon)	Cloud top pressure - mean of individual pixel uncertainties
ctp_log(time, lat, lon)	Cloud top pressure - logarithmic mean of individual pixel retrievals
ctp_corrected(time, lat, lon)	Corrected cloud top pressure - mean of corrected individual pixel retrievals

	cloud	Doc:	Cloud_cci_D3.3_PUG_v5.1.do				
273		Date:	16 January 202			16 January 2020	
- Terrin (cci	Issue:	5	Revision:	1	Page 65	

Level-3C variable	Description
ctp_corrected_std(time, lat, lon)	Corrected cloud top pressure - standard deviation of corrected individual pixel retrievals
ctp_corrected_prop_unc(time, lat, lon)	Corrected cloud top pressure - propagated uncertainty: total uncertainty from corrected individual pixel uncertainty added in quadrature
ctp_corrected_corr_unc(time, lat, lon)	Corrected cloud top pressure - correlated uncertainty assuming correlation of 0.1
ctp_corrected_unc(time, lat, lon)	Corrected cloud top pressure - mean of corrected individual pixel uncertainties
	Surface temperature
stemp(time, lat, lon)	Surface temperature - mean of individual pixel retrievals
<pre>stemp_std(time, lat, lon)</pre>	Surface temperature - standard deviation of individual pixel retrievals
<pre>stemp_prop_unc(time, lat, lon)</pre>	Surface temperature - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
<pre>stemp_corr_unc(time, lat, lon)</pre>	Surface temperature - correlated uncertainty assuming correlation of 0.1
<pre>stemp_unc(time, lat, lon)</pre>	Surface temperature - mean of individual pixel uncertainties
	Cloud effective radius
cer(time, lat, lon)	Cloud effective radius - mean of individual pixel retrievals
cer_std(time, lat, lon)	Cloud effective radius - standard deviation of individual pixel retrievals
<pre>cer_prop_unc(time, lat, lon)</pre>	Cloud effective radius - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
cer_corr_unc(time, lat, lon)	Cloud effective radius - correlated uncertainty assuming correlation of 0.1
cer_unc(time, lat, lon)	Cloud effective radius - mean of individual pixel uncertainties
cer_liq(time, lat, lon)	Liquid cloud effective radius - mean of individual pixel retrievals
cer_liq_std(time, lat, lon)	Liquid cloud effective radius - standard deviation of individual pixel retrievals
cer_liq_prop_unc(time, lat, lon)	Liquid cloud effective radius - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature

cloud cci	Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
	Date:	16 January 2020			
	lssue:	5	Revision:	1	Page 66

Level-3C variable	Description
cer_liq_corr_unc(time, lat, lon)	Liquid cloud effective radius - correlated uncertainty assuming correlation of 0.1
cer_liq_unc(time, lat, lon)	Liquid cloud effective radius - mean of individual pixel uncertainties
cer_ice(time, lat, lon)	Ice cloud effective radius - mean of individual pixel retrievals
cer_ice_std(time, lat, lon)	Ice cloud effective radius - standard deviation of individual pixel retrievals
<pre>cer_ice_prop_unc(time, lat, lon)</pre>	Ice cloud effective radius - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
cer_ice_corr_unc(time, lat, lon)	Ice cloud effective radius - correlated uncertainty assuming correlation of 0.1
cer_ice_unc(time, lat, lon)	Ice cloud effective radius - mean of individual pixel uncertainties
	Cloud optical thickness
cot(time, lat, lon)	Cloud optical thickness - mean of individual pixel retrievals
cot_log(time, lat, lon)	Cloud optical thickness - logarithmic mean of individual pixel retrievals
cot_std(time, lat, lon)	Cloud optical thickness - standard deviation of individual pixel retrievals
<pre>cot_prop_unc(time, lat, lon)</pre>	Cloud optical thickness - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
<pre>cot_corr_unc(time, lat, lon)</pre>	Cloud optical thickness - correlated uncertainty assuming correlation of 0.1
<pre>cot_unc(time, lat, lon)</pre>	Cloud optical thickness - mean of individual pixel uncertainties
cot_liq(time, lat, lon)	Liquid cloud optical thickness- mean of individual pixel retrievals
cot_liq_std(time, lat, lon)	Liquid cloud optical thickness - standard deviation of individual pixel retrievals
<pre>cot_liq_prop_unc(time, lat, lon)</pre>	Liquid cloud optical thickness - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
<pre>cot_liq_corr_unc(time, lat, lon)</pre>	Liquid cloud optical thickness - correlated uncertainty assuming correlation of 0.1
<pre>cot_liq_unc(time, lat, lon)</pre>	Liquid cloud optical thickness - mean of individual pixel uncertainties
cot_ice(time, lat, lon)	Ice cloud optical thickness - mean of individual pixel retrievals

cloud	Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx	
	Date:	16 January 2020				
	cci	Issue:	5	Revision:	1	Page 67

Level-3C variable	Description
<pre>cot_ice_std(time, lat, lon)</pre>	Ice cloud optical thickness - standard deviation of individual pixel retrievals
<pre>cot_ice_prop_unc(time, lat, lon)</pre>	Ice cloud optical thickness - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
<pre>cot_ice_corr_unc(time, lat, lon)</pre>	Ice cloud optical thickness - correlated uncertainty assuming correlation of 0.1
<pre>cot_ice_unc(time, lat, lon)</pre>	Ice cloud optical thickness - mean of individual pixel uncertainties
	Cloud effective emissivity
cee(time, lat, lon)	Cloud effective emissivity at 10.8 μ m - mean of individual pixel retrievals
cee_std(time, lat, lon)	Cloud effective emissivity at 10.8 μ m - standard deviation of individual pixel retrievals
<prec_prop_unc(time, lat,="" lon)<="" pre=""></prec_prop_unc(time,>	Cloud effective emissivity at 10.8 µm - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
<pre>cee_corr_unc(time, lat, lon)</pre>	Cloud effective emissivity at 10.8 μ m - correlated uncertainty assuming correlation of 0.1
cee_unc(time, lat, lon)	Cloud effective emissivity at 10.8 μ m - mean of individual pixel uncertainties
	Spectral cloud albedo
cla_vis006(time, lat, lon)	Cloud albedo at 0.6 μ m - mean of individual pixel retrievals
cla_vis006_std(time, lat, lon)	Cloud albedo at 0.6 μ m - standard deviation of individual pixel retrievals
cla_vis006_prop_unc(time, lat, lon)	Cloud albedo at 0.6 µm - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
cla_vis006_corr_unc(time, lat, lon)	Cloud albedo at 0.6 μm - correlated uncertainty assuming correlation of 0.1
cla_vis006_unc(time, lat, lon)	Cloud albedo at 0.6 µm - mean of individual pixel uncertainties
cla_vis006_liq(time, lat, lon)	Liquid cloud albedo at 0.6 μ m - mean of individual pixel retrievals
cla_vis006_liq_std(time, lat, lon)	Liquid cloud albedo at 0.6 μ m - standard deviation of individual pixel retrievals
<pre>cla_vis006_liq_unc(time, lat, lon)</pre>	Liquid cloud albedo at 0.6 µm - mean of individual pixel uncertainties
cla_vis006_ice(time, lat, lon)	Ice cloud albedo at $0.6 \ \mu\text{m}$ - mean of individual pixel retrievals

cloud	Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx	
	Date:	16 January 2020				
	cci	lssue:	5	Revision:	1	Page 68

Level-3C variable	Description
cla_vis006_ice_std(time, lat, lon)	Ice cloud albedo at 0.6 μ m - standard deviation of individual pixel retrievals
<pre>cla_vis006_ice_unc(time, lat, lon)</pre>	Ice cloud albedo at 0.6 μ m - mean of individual pixel uncertainties
cla_vis008(time, lat, lon)	Cloud albedo at 0.8 μ m - mean of individual pixel retrievals
cla_vis008_std(time, lat, lon)	Cloud albedo at 0.8 μ m - standard deviation of individual pixel retrievals
cla_vis008_prop_unc(time, lat, lon)	Cloud albedo at 0.8 μ m - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
cla_vis008_corr_unc(time, lat, lon)	Cloud albedo at 0.8 μm - correlated uncertainty assuming correlation of 0.1
cla_vis008_unc(time, lat, lon)	Cloud albedo at 0.8 μ m - mean of individual pixel uncertainties
cla_vis008_liq(time, lat, lon)	Liquid cloud albedo at 0.8 μ m - mean of individual pixel retrievals
cla_vis008_liq_std(time, lat, lon)	Liquid cloud albedo at 0.8 μ m - standard deviation of individual pixel retrievals
cla_vis008_liq_unc(time, lat, lon)	Liquid cloud albedo at 0.8 μ m - mean of individual pixel uncertainties
cla_vis008_ice(time, lat, lon)	Ice cloud albedo at 0.8 μ m - mean of individual pixel retrievals
cla_vis008_ice_std(time, lat, lon)	Ice cloud albedo at 0.8 μ m - standard deviation of individual pixel retrievals
<pre>cla_vis008_ice_unc(time, lat, lon)</pre>	Ice cloud albedo at 0.8 μ m - mean of individual pixel uncertainties
	Cloud water path
lwp(time, lat, lon)	Cloud liquid water path - mean of individual pixel retrievals
lwp_std(time, lat, lon)	Cloud liquid water path - standard deviation of individual pixel retrievals
<pre>lwp_prop_unc(time, lat, lon)</pre>	Cloud liquid water path - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
<pre>lwp_corr_unc(time, lat, lon)</pre>	Cloud liquid water path - correlated uncertainty assuming correlation of 0.1
lwp_unc(time, lat, lon)	Cloud liquid water path - mean of individual pixel uncertainties
lwp_allsky(time, lat, lon)	Cloud liquid water path all-sky - grid box mean of individual pixel retrievals, including clear-sky pixels
iwp(time, lat, lon)	Cloud ice water path - mean of individual pixel retrievals

cloud cci	Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
	Date:	16 January 2020			
	Issue:	5	Revision:	1	Page 69

Level-3C variable	Description
iwp_std(time, lat, lon)	Cloud ice water path - standard deviation of individual pixel retrievals
<pre>iwp_prop_unc(time, lat, lon)</pre>	Cloud ice water path - propagated uncertainty: total uncertainty from individual pixel uncertainty added in quadrature
<pre>iwp_corr_unc(time, lat, lon)</pre>	Cloud ice water path - correlated uncertainty assuming correlation of 0.1
<pre>iwp_unc(time, lat, lon)</pre>	Cloud ice water path - mean of individual pixel uncertainties
<pre>iwp_allsky(time, lat, lon)</pre>	Cloud ice water path all-sky - grid box mean of individual pixel retrievals, including clear-sky pixels
<u>T0</u>	A broadband radiative fluxes
toa_lwup(time, lat, lon)	top of atmosphere upwelling longwave radiation, all-sky
toa_lwup_clr(time, lat, lon)	top of atmosphere upwelling longwave radiation, clear-sky
toa_swup(time, lat, lon)	top of atmosphere upwelling shortwave radiation, all-sky
toa_swup_clr(time, lat, lon)	top of atmosphere upwelling shortwave radiation, clear-sky
toa_swdn(time, lat, lon)	top of atmosphere downwelling shortwave radiation
toa_lwup_low(time, lat, lon)	top of atmosphere upwelling longwave radiation, all-sky + low clouds
toa_lwup_mid(time, lat, lon)	top of atmosphere upwelling longwave radiation, all-sky + mid-level clouds
toa_lwup_hig(time, lat, lon)	top of atmosphere upwelling longwave radiation, all-sky + high clouds
toa_swup_low(time, lat, lon)	top of atmosphere upwelling shortwave radiation, all-sky + low clouds
toa_swup_mid(time, lat, lon)	top of atmosphere upwelling shortwave radiation, all-sky + mid-level clouds
toa_swup_hig(time, lat, lon)	top of atmosphere upwelling shortwave radiation, all-sky + high clouds
BO	A broadband radiative fluxes
boa_lwdn(time, lat, lon)	bottom of atmosphere downwelling longwave radiation, all-sky
boa_lwdn_clr(time, lat, lon)	bottom of atmosphere downwelling longwave radiation, clear-sky
boa_swdn(time, lat, lon)	bottom of atmosphere downwelling shortwave radiation, all-sky
boa_swdn_clr(time, lat, lon)	bottom of atmosphere downwelling shortwave radiation, clear-sky
boa_lwup(time, lat, lon)	bottom of atmosphere upwelling longwave radiation, all-sky
boa_lwup_clr(time, lat, lon)	bottom of atmosphere upwelling longwave radiation, clear-sky
boa_swup(time, lat, lon)	bottom of atmosphere upwelling shortwave radiation, all-sky
<pre>boa_swup_clr(time, lat, lon)</pre>	bottom of atmosphere upwelling shortwave radiation, clear-sky
<pre>boa_par_dif(time, lat, lon)</pre>	bottom of atmosphere diffuse downwelling photosynthetic radiative flux

Level-3C variable	Description				
boa_par_tot(time, lat, lon)	bottom of atmosphere total downwelling photosynthetic radiative flux				
Histograms					
hist2d_cot_ctp(time, hist_phase, hist2d_ctp_bin_centre, hist2d_cot_bin_centre, lat, lon)	Two-dimensional, COT-CTP histogram containing absolute counts				
hist2d_ctp_bin_centre	Center of CTP bins in 2-dim COT-CTP histogram				
hist2d_cot_bin_centre	Center of COT bins in 2-dim COT-CTP histogram				
hist2d_ctp_bin_border	Borders of CTP bins in 2-dim COT-CTP histogram				
hist2d_cot_bin_border	Borders of COT bins in 2-dim COT-CTP histogram				
hist1d_cot(time, hist_phase, hist1d_cot_bin_centre, lat, lon)	1-dimensional histogram of cloud optical thickness per grid cell				
hist1d_cot_bin_centre	Center of COT bins in 1-dim COT histogram				
hist1d_cot_bin_border	Borders of COT bins in 1-dim COT histogram				
hist1d_ctp(time, hist_phase, hist1d_ctp_bin_centre, lat, lon)	1-dimensional histogram of cloud top pressure per grid cell				
hist1d_ctp_bin_centre	Center of CTP bins in 1-dim CTP histogram				
hist1d_ctp_bin_border	Borders of CTP bins in 1-dim CTP histogram				
hist1d_ctt(time, hist_phase, hist1d_ctt_bin_centre, lat, lon)	1-dimensional histogram of cloud top temperature per grid cell				
hist1d_ctt_bin_centre	Center of CTT bins in 1-dim CTT histogram				
hist1d_ctt_bin_border	Borders of CTT bins in 1-dim CTT histogram				
hist1d_cer(time, hist_phase, hist1d_cer_bin_centre, lat, lon)	1-dimensional histogram of cloud effective radius per grid cell				
hist1d_cer_bin_centre	Center of CER bins in 1-dim CER histogram				
hist1d_cer_bin_border	Borders of CER bins in 1-dim CER histogram				
hist1d_cwp(time, hist_phase, hist1d_cwp_bin_centre, lat, lon)	1-dimensional histogram of cloud water path per grid cell				
hist1d_cwp_bin_centre	Center of CWP bins in 1-dim CWP histogram				
hist1d_cwp_bin_border	Borders of CWP bins in 1-dim CWP histogram				

cloud	1	Doc:			Clou	d_cci_D3.3_PUG_v5.1.docx
	cloud	Date:	16 January 2020			
	cci	Issue:	5	Revision:	1	Page 71

Level-3C variable	Description
hist1d_cla_vis006(time, hist_phase, hist1d_cla_vis006_bin_centre, lat, lon)	1-dimensional histogram of cloud albedo at 0.6µm per grid cell
hist1d_cla_vis006_bin_centre	Center of CLA_vis006 bins in 1-dim CLA_vis006 histogram
hist1d_cla_vis006_bin_border	Borders of CLA_vis006 bins in 1-dim CLA_vis006 histogram
hist1d_cla_vis008(time, hist_phase, hist1d_cla_vis008_bin_centre, lat, lon)	1-dimensional histogram of cloud albedo at 0.8µm per grid cell
hist1d_cla_vis008_bin_centre	Center of CLA_vis008 bins in 1-dim CLA_vis008 histogram
hist1d_cla_vis008_bin_border	Borders of CLA_vis008 bins in 1-dim CLA_vis008 histogram

	cloud cci	Doc:	Cloud_cci_D3.3_PUG_v5.1.docx			
		Date:	16 January 2020			
		lssue:	5	Revision:	1	Page 72

Annex C - Propagation of Level-3 uncertainties into higher level products

This section is provides basic information on the propagation of uncertainties provided in Cloud_cci Level-3 products to higher level products such as zonal or global means.

To recall, the reported pixel-based uncertainties X_{unc} for a given variable X (both being a result of the optimal estimation technique) represent the 68% confidence interval that the true value is within $X \pm X_{unc}$. Given this, it can be assumed that for 68% of all pixels the truth is within $X \pm X_{unc}$. This confidence interval can be propagated into Level-3 product, i.e. monthly mean values, following the rationale given in equation 1 to 5 in Stengel et al. (2017) which are repeated in the following:

$$\sigma_{\text{std}}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \langle x \rangle)^2$$
 Equation (1)

$$\langle \sigma_i \rangle = \frac{1}{N} \sum_{i=1}^{N} (\sigma_i)$$
 Equation (2)

$$\langle \sigma_i^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} (\sigma_i^2)$$
 Equation (3)

$$\sigma_{natural}^2 = \sigma_{std}^2 - (1 - c) \langle \sigma_i^2 \rangle$$
 Equation (4)

$$\sigma_{\langle x \rangle}^2 = \frac{1}{N} \sigma_{natural}^2 + c \langle \sigma_i \rangle^2 + (1 - c) \frac{1}{N} \langle \sigma_i^2 \rangle$$
 Equation (5)

Equation (5) reports the uncertainty of the monthly mean value which is calculated from OE output variables and their uncertainties (σ_i). This uncertainty of the mean ($\sigma_{\langle x \rangle}$) also represents a 68% confidence interval around the calculated mean ($\langle x \rangle$), meaning a likelihood of 68% that the truth is within $\langle x \rangle \pm \sigma_{\langle x \rangle}$.

Based on these Level-3 uncertainty rationale above, the uncertainties for higher level products, such as zonal, global, annual or multi-annual means (Level-4 hereafter), can be formulated in a similar fashion. For this we replace σ_i , which is the pixel-based (Level-2) uncertainty, by $\sigma_{\langle x \rangle}$ which is the uncertainty of a averaged value (Level-3) in equation (5) to express the uncertainty of the Level-4 mean of means ($\sigma^2_{\langle \langle x \rangle_i \rangle}$); see equation (6).

$$\sigma_{\langle\langle x\rangle_j\rangle}^2 = \frac{1}{M} (\sigma_{\langle x\rangle})_{std}^2 + c \langle (\sigma_{\langle x\rangle})_j \rangle^2 + (1-c) \frac{1}{M} \langle (\sigma_{\langle x\rangle})_j^2 \rangle$$
 Equation (6)

$$\sigma_{\langle\langle x\rangle_j\rangle} = \frac{1}{M} \sqrt{\sum_{j=1}^{M} ((\sigma_{\langle x\rangle})_j^2)}$$
Equation (7)
	cloud cci	Doc:	Cloud_cci_D3.3_PUG_v5.1.docx			
		Date:	16 January 2020			
		lssue:	5	Revision:	1	Page 73

Assuming all Level-3 uncertainties being random and uncorrelated the Level-4 uncertainty reduces to the third term of the right hand side of equation (6), which is basically just adding the Level-3 uncertainties in quadrature (as done for uncertainty propagation for sums) divided by the number M (equation (7)). It needs to be noted that in this scenario also a large set of Level-3 input data is assumed which allows the omission of the first term on the right hand side of equation (6), which represents the sampling uncertainty for a Gaussian distributed sample. In the following the impact of incorporating different uncertainty propagation terms is discussed.

Figure C-1 Monthly standard deviation (a) and monthly mean (b) for cloud optical thickness (COT). Panels (c) and (d) show the estimated natural variability and uncertainty of the mean (d) for a correlation of 0.1. Panel (e) and (f) are as panels (c) and (d) but for an uncertainty correlation of 1.0. All data is from AVHRR-PM in 2008/06. Figure taken from Stengel et al. (2017).

	cloud cci	Doc:	Cloud_cci_D3.3_PUG_v5.1.docx			
		Date:	16 January 2020			
		lssue:	5	Revision:	1	Page 74

Panels (d) and (f) of Figure C-1 show global maps of the Level-3 uncertainties of COT for Level-2 uncertainty correlations of 0.1 and 1.0. These two scenarios are used in the following to demonstrate the uncertainty propagation from Level-3 monthly means to Level-4 zonal means. 5 cases are defined as given in Table C-1 with different terms being incorporated in the uncertainty propagation.

Table C-1 Definition of test cases with different uncertainty terms taken into account when propagating the uncertainties from monthly means to zonal means.

Case	Description
Case 1	Arithmetically averaging the Level 3 uncertainties
Case 2	Using all terms of equation (6) and assuming an Level-3 uncertainty correlation of 1.0
Case 3	Using all terms of equation (6) and assuming an Level-3 uncertainty correlation of 0.1
Case 4	Using all terms of equation (6) and assuming an Level-3 uncertainty correlation of 0.0 (term 2 is vanishing).
Case 5	Using all terms of equation (6) and assuming an Level-3 uncertainty correlation of 0.0 and assuming a sampling uncertainty of 0 (only term 3 remains)

Figure C-2 Uncertainties for zonal mean COT values shown for the 5 cases defined in Table C-1. Panel (a) shows the results when using the Level-3 uncertainties shown Figure C-1 panel (d), which are based on Level-2 uncertainty correlations of 0.1, and panel (b) shows the results when using Level-3 uncertainties shown in Figure C-1 panel (f), which are based on Level-2 uncertainty correlations of 1.0.

For all 5 cases the uncertainties of the zonal mean (calculated from the 2d fields of monthly means) were determined and are shown in Figure C-2. Case 1 and Case 2 uncertainties are identical, which is clear when considering that equation (6) reduces to the seconded term for uncertainty correlations of 1.0, which is the arithmetical average of the Level-3 uncertainties. When reducing the Level-3 uncertainty correlation, Level-4 uncertainties reduce as well (Case 3). Level-4 uncertainties are partly more than 10 times lower when assuming no Level-3 uncertainty correlations compared to assuming a correlation of 1.0. The sampling uncertainty, visible as difference between Case 1 and Case 2 is only of minor importance in the given scenarios.

As demonstrated in the discussion above, the uncertainty correlations drive the amplitude of the higher level uncertainties, although they remain to be not exactly known at the moment.